

This project has received financial support from the European Union's Horizon 2020 Programme under grant agreement no.

101036563

DELIVERABLE

D4.4 Verification, Validation and

Evaluation report 1

Project Acronym: COMPAIR

Project title: Community Observation Measurement & Participation in AIR Science

Grant Agreement No. 101036563

Website: www.wecompair.eu

Version: 1.0

Date: 30.06.2023

Responsible Partner: ATC

Contributing Partners: IMEC, UAEG, SODAQ, HHI

Reviewers: All technical partners

Andrew Stott, Karel Jedlicka

Dissemination Level: Public X

Confidential, only for members of the consortium (including the

Commission Services)

http://www.wecompair.eu/

© 101036563 COMPAIR Project Partners 2

Revision History

Version Date Author Organisation Description

0.1 17.05.2023
Athanasios Dalianis,

Marina Klitsi
ATC Draft ToC

0.2 05.06.2023 Athanasios Dalianis ATC
Input in Section

2.1

0.3 07.06.2023 Athanasios Dalianis ATC
Input in Section

2.2

0.4 09.06.2023
Oliver Schreer, Sylvain

Renault
HHI Input for DEVA

0.5 13.06.2023 Christos Karelis UAEG
Input in Section

2.3

0.6 13.06.2023

Athanasios Dalianis,

Richard Brown, Jaap

De Winter

ATC, SODAQ
Input in Section

2.2

0.7 15.06.2023
Athanasios Dalianis,

Daniel Bertocci
ATC, IMEC

Input in Sections

2.2, 2.3

0.8 19.06.2023 Athanasios Dalianis ATC
Version ready for

internal review

0.9 22.06.2023
Andrew Stott, Burcu

Celikkol, Gert Vervaet,

External,

IMEC, DV
Version reviewed

1.0 28.06.2023 Athanasios Dalianis ATC Final version

© 101036563 COMPAIR Project Partners 3

Table of Contents

Executive Summary 8

1. Introduction 9

Purpose and Scope 9

Structure of the document 9

2. Assessing the COMPAIR solution 10

2.1 Validation methodology 10

2.1.1 ISO/IEC 25010:2011 10

2.1.2 Quality in use model 11

2.1.3 Product quality model 11

2.1.4 Functional suitability 12

2.1.5 Performance efficiency 12

2.1.6 Compatibility 13

2.1.7 Usability 13

2.1.8 Security 13

2.1.9 Maintainability 14

2.1.10 Reliability 14

2.1.11 Portability 15

2.2 Overview of evaluation tools 15

Performance efficiency 16

Monitoring 17

Prometheus and Grafana 17

Performance testing tools 24

Page Speed Insights 24

JMeter 25

Functional suitability 26

JUnit 26

Mockito 26

OWASP Zap 27

Security Headers 27

Colorblindly 29

PageSpeed Insights 29

Matomo 29

2.3 Evaluation results 31

Performance 31

© 101036563 COMPAIR Project Partners 4

DEVA 37

Frame rate 37

Latency 39

Data consumption 40

Functional suitability 42

Compatibility 42

Usability 43

Security 44

Maintainability 47

Reliability 48

Portability 48

3. Conclusion 50

4. References 51

© 101036563 COMPAIR Project Partners 5

List of Tables

Table 1:Overview of evaluation tools ... 15

Table 2:Dashboard performance scores ... 33

Table 3: PMD exploring the sensors - stress tests .. 35

Table 4: Monitoring Dashboard - Exploring the projects - stress tests 36

Table 5: Exploring DEVA - stress tests ... 36

Table 6:FPS of DEVA for various scenarios .. 39

Table 7:Latency of DEVA for various scenarios .. 40

Table 8: Data consumption for various scenarios .. 41

Table 9:Functional suitability measurements ... 42

Table 10: PageSpeed Usability measurements ... 43

Table 11:SonarQube security measurements ... 44

Table 12:Security Headers scores .. 44

Table 13:Zap security results .. 47

Table 14:SonarQube maintainability measurements ... 47

Table 15:SonarQube reliability measurements .. 48

© 101036563 COMPAIR Project Partners 6

List of Figures
Figure 1: The ISO/IEC 25010:2011 system/software quality model characteristics 11

Figure 2:Prometheus dashboard ... 18

Figure 3: Grafana dashboard for CompAir .. 18

Figure 4: CaaS Databricks .. 20

Figure 5:Telraam Network dashboard ... 20

Figure 6:Telraam Diagnostics ... 21

Figure 7:Sensor Data .. 21

Figure 8: Telraam AWS Health ... 22

Figure 9: Know Your Air Map .. 23

Figure 10: cloud services .. 24

Figure 11:Matomo statistics .. 30

Figure 12:PMD Performance Score .. 33

Figure 13:CO2 Performance Score ... 34

Figure 14: Monitoring Performance Score ... 34

Figure 15:PMD Dashboard ZAP results .. 45

Figure 16:CO2 Dashboard ZAP results ... 45

Figure 17:Monitoring Dashboard ZAP results .. 46

Figure 18:Likelihood and Impact levels ... 46

© 101036563 COMPAIR Project Partners 7

List of Abbreviations

Acronym Description

API Application Programming Interface

AQ CaaS Air Quality Calibration as a Service

AR Augmented Reality

AWS Amazon Web Services

CI/CD Continuous Integration / Continuous Deployment

CSP Content Security Policy

DEVA Dynamic Exposure Visualisation App

FTP File transfer Protocol

GUI Graphical User Interface

GDPR General Data Protection Regulation

HTTP(S) Hypertext Transfer Protocol (Secure)

HSTS Strict-Transport-Security

JDBC Java Database Connectivity

JMS Java Message Service

KPI Key Performance Indicators

OWASP Open Web Application Security Project

REST Representational State Transfer

SOAP Simple Objects Access Protocol

SQL Structured Query Language

UI User Interface

UX User Experience

W3C World Wide Web Consortium

WCAG Web Content Accessibility Guidelines

XSS Cross-Site Scripting

© 101036563 COMPAIR Project Partners 8

Executive Summary

This document presents a comprehensive analysis of the testing of the current COMPAIR

prototype. The report focuses on applying the ISO/IEC 25010:2011 standard methodology to

assess the quality characteristics of the software system. This methodology defines a set of

quality characteristics and sub-characteristics that serve as a framework for evaluating the

overall performance, reliability, security, usability, and other aspects of a software system.

Each quality characteristic is further broken down into sub-characteristics, which serve as

specific attributes to assess. For instance, functionality encompasses aspects such as

correctness, completeness, and interoperability, while usability focuses on factors like

learnability, operability, and user error protection. By addressing each sub-characteristic, the

deliverable provides a comprehensive evaluation of the software system's overall quality.

The report presents detailed findings from the testing activities, providing information about

the tools and methodologies used and includes the outcomes of functional testing,

performance testing, security testing, and usability testing. It highlights the strengths and

weaknesses of the software system, identifies areas of concern, and provides insights for

improving the system's performance and adherence to the ISO/IEC 25010:2011 quality

characteristics.

© 101036563 COMPAIR Project Partners 9

1. Introduction

Purpose and Scope

The objective of this report is to provide an overview of the verification, validation, and

evaluation activities performed for the second major release of the COMPAIR prototype,

highlighting the tools used, and the key findings and observations discovered. By employing

the ISO/IEC 25010:2011 standard methodology, the report aims to assess the software

system's compliance with the defined quality characteristics and identify any areas that require

improvement.

The testing process follows the guidelines set forth by ISO/IEC 25010:2011, which involves a

systematic approach to evaluate the software system's functional and non-functional aspects.

The standard encompasses several quality characteristics, including functionality, reliability,

performance efficiency, security, usability, compatibility, maintainability, and portability.

Structure of the document

This deliverable is organised as follows:

- Section 2 presents the validation methodology, the evaluation tools used and testing

results of the current prototype

- Section 3 concludes this deliverable

© 101036563 COMPAIR Project Partners 10

2. Assessing the COMPAIR solution

In this section, we provide an overview of the evaluation methodology and tools used for the

monitoring and testing of the COMPAIR prototype, as well as the relevant results of these

tests in various quality aspects like performance, security etc. These results depict the quality

of the current platform prototype and provide a good first indication on the sections that the

platform as a whole performs well or more effort is needed to reach the desired levels of

quality.

2.1 Validation methodology

In this section, we provide an overview of the methodology used for the system validation of

the platform. More specifically, we present the ISO/IEC 25010:20111 and explain its quality

characteristics. Out of these characteristics, we will select the most appropriate ones, in order

to form the most suitable quality model for the COMPAIR project and perform our validation

tests to the final version of the COMPAIR platform.

Software validation is the “confirmation by examination and provision of objective evidence

that software specifications conform to user needs and intended uses, and that the particular

requirements implemented through software can be consistently fulfilled”. Since software is

usually part of a larger system, the validation of software typically includes evidence that all

software requirements have been implemented correctly and completely.

In general, software validation is the process of developing a “level of confidence” that the

system meets all requirements, functionalities, and user expectations as set out during the

design process. It is a critical tool used to assure the quality of its components and the overall

system. It allows for improving/refining the final product.

2.1.1 ISO/IEC 25010:2011

Recently, the BS ISO/IEC 25010:2011 standard about system and software quality models

has replaced ISO 9126-1. Applying any of these models is not a straightforward process.

There are no automated means for testing software against each of the characteristics defined

by each model. For each model, the final attributes must be matched against measurable

metrics and thresholds for evaluating the results must be set. It is then possible to measure

the results of the tests performed (either quantitative or qualitative/observed).

The ISO/IEC 25010:2011 standard is the most widespread reference model and includes the

common software quality characteristics that are supported by the other models. This standard

defines two quality models providing a consistent terminology for specifying, measuring and

evaluating system and software product quality, as described below.

1 https://www.iso.org/standard/35733.html

https://www.iso.org/standard/35733.html

© 101036563 COMPAIR Project Partners 11

2.1.2 Quality in use model

The Quality in use model is composed of five characteristics that relate to the outcome of

interaction with the system and characterises the impact that the product can have on the

stakeholders. It addresses external quality, i.e. the quality of a (software) product as perceived

by its users. External quality assesses the characteristics of the product quality model by

black-box measurement.

2.1.3 Product quality model

The Product quality model is composed of eight characteristics that relate to static properties

of software and dynamic properties of the computer system. It is intended to measure the

internal quality, i.e., the quality of the software (and, particularly, its internal components) that

eventually delivers external quality. Internal quality assesses the characteristics of the product

quality model by glass-box measurement, i.e. measuring system properties based on

knowledge about the internal structure of the software. For our case, the product quality model

is adopted. The eight quality characteristics are further divided into sub-characteristics, as

shown in the following figure:

Figure 1: The ISO/IEC 25010:2011 system/software quality model characteristics

Although rather generic, not all the listed quality characteristics might be applicable for our

purpose, so a tailor-made subset could be better suited. For each of the sub-characteristics,

a metric/measurable attribute will be defined, along with thresholds. These metrics and

thresholds are customised for each software product, which in our case is the COMPAIR

platform (consisting of individual components). By evaluating these metrics, we will be able to

assess the overall quality of our platform and the percent to which we were able to meet the

user and technical requirements (reflected to system specifications and functionalities),

defined during the design phase of the project.

A quality model is the cornerstone of a product quality system. It determines which quality

characteristics will be considered when evaluating the properties of a software product.

The quality of a system is the degree to which the system satisfies the stated and implied

needs of its various stakeholders, and thus provides value. Those stakeholders' needs are

© 101036563 COMPAIR Project Partners 12

precisely what is represented in the quality model, which categorises the product quality into

characteristics and sub-characteristics, as defined below.

2.1.4 Functional suitability

This characteristic represents the degree to which a product or system provides functions that

meet stated and implied needs when used under specified conditions. This characteristic is

composed of the following sub characteristics:

- Functional completeness - Degree to which the set of functions covers all the

specified tasks and user objectives.

- Functional correctness - Degree to which a product or system provides the correct

results with the needed degree of precision.

- Functional appropriateness - Degree to which the functions facilitate the

accomplishment of specified tasks and objectives.

2.1.5 Performance efficiency

This characteristic represents the performance relative to the amount of resources used under

stated conditions. This characteristic is composed of the following sub characteristics:

- Time behaviour - Degree to which the response and processing times and throughput

rates of a product or system, when performing its functions, meet requirements.

- Resource utilisation - Degree to which the amounts and types of resources used by a

product or system, when performing its functions, meet requirements.

- Capacity - Degree to which the maximum limits of a product or system parameter meet

requirements.

In the context of the DEVA which is an interactive AR application developed in Unity3D, these

performance characteristics are further refined:

- Frame rate is the number of frames per second that the AR application renders all the

graphical elements on the device (3D rendering). A high frame rate is required to create

a smooth and responsive AR experience. Here usually 15-20 frames per second are

the lower limits.

- Latency is the time delay between user input and output. A low latency is essential for

creating a realistic AR experience.

- Another important aspect is data consumption, if the app requires continuous access

to a server and network connectivity. Frequent changes of AR parameters in DEVA

and changes of the user’s location will produce new queries to the Data Manager.

© 101036563 COMPAIR Project Partners 13

2.1.6 Compatibility

This is the degree to which a product, system or component can exchange information with

other products, systems, or components, and/or perform its required functions, while sharing

the same hardware or software environment. This characteristic is composed of the following

sub characteristics:

- Co-existence - Degree to which a product can perform its required functions

efficiently while sharing a common environment and resources with other products,

without detrimental impact on any other product.

- Interoperability - Degree to which two or more systems, products or components

can exchange information and use the information that has been exchanged.

2.1.7 Usability

This characteristic represents the degree to which a product or system can be used by

specified users to achieve specific goals with effectiveness, efficiency, and satisfaction in a

specified context of use. This characteristic is composed of the following sub characteristics:

- Appropriateness recognisability - Degree to which users can recognize whether a

product or system is appropriate for their needs.

- Learnability - Degree to which a product or system can be used by specified users

to achieve specific goals of learning to use the product or system with

effectiveness, efficiency, freedom from risk and satisfaction in a specified context

of use.

- Operability - Degree to which a product or system has attributes that make it easy

to operate and control.

- User error protection - Degree to which a system protects users against making

errors.

- User interface aesthetics - Degree to which a user interface enables pleasing and

satisfying interaction for the user.

- Accessibility - Degree to which a product or system can be used by people with the

widest range of characteristics and capabilities to achieve a specified goal in a

specified context of use.

2.1.8 Security

This is the degree to which a product or system protects information and data so that persons

or other products or systems have the degree of data access appropriate to their types and

levels of authorization. This characteristic is composed of the following sub characteristics:

- Confidentiality - Degree to which a product or system ensures that data are

accessible only to those authorised to have access.

© 101036563 COMPAIR Project Partners 14

- Integrity - Degree to which a system, product or component prevents unauthorised

access to, or modification of, computer programs or data.

- Non-repudiation - Degree to which actions or events can be proven to have taken

place, so that the events or actions cannot be repudiated later.

- Accountability - Degree to which the actions of an entity can be traced uniquely to

the entity.

- Authenticity - Degree to which the identity of a subject or resource can be proved

to be the one claimed.

2.1.9 Maintainability

This characteristic represents the degree of effectiveness and efficiency with which a product

or system can be modified to improve it, correct it or adapt it to changes in environment, and

in requirements. This characteristic is composed of the following sub characteristics:

- Modularity -. Degree to which a system or computer program is composed of

discrete components such that a change to one component has minimal impact on

other components.

- Reusability - Degree to which an asset can be used in more than one system, or

in building other assets.

- Analysability - Degree of effectiveness and efficiency with which it is possible to

assess the impact on a product or system of an intended change to one or more

of its parts, or to diagnose a product for deficiencies or causes of failures, or to

identify parts to be modified.

- Modifiability - Degree to which a product or system can be effectively and efficiently

modified without introducing defects or degrading existing product quality.

- Testability - Degree of effectiveness and efficiency with which test criteria can be

established for a system, product or component and tests can be performed to

determine whether those criteria have been met.

2.1.10 Reliability

This is the degree to which a system, product or component performs specific functions under

specified conditions for a certain period. This characteristic is composed of the following sub

characteristics:

- Maturity - Degree to which a system, product or component meets needs for

reliability under normal operation.

- Availability - Degree to which a system, product or component is operational and

accessible when required for use.

© 101036563 COMPAIR Project Partners 15

- Fault tolerance - Degree to which a system, product or component operates as

intended despite the presence of hardware or software faults.

- Recoverability - Degree to which in the event of an interruption or a failure, a

product or system can recover the data directly affected and re-establish the

desired state of the system.

2.1.11 Portability

Portability is the degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other operational or usage

environment to another. This characteristic is composed of the following sub characteristics:

- Adaptability - Degree to which a product or system can effectively and efficiently

be adapted for different or evolving hardware, software or other operational or

usage environments.

- Installability - Degree of effectiveness and efficiency with which a product or system

can be successfully installed and/or uninstalled in a specified environment.

- Replaceability - Degree to which a product can replace another specified software

product for the same purpose in the same environment.

2.2 Overview of evaluation tools

This section presents an overview of the tools that are used for monitoring, testing and

validating the COMPAIR solution. These tools are summarised in the following table and are

described in more detail below.

Table 1:Overview of evaluation tools

Category Tool

Performance monitoring Prometheus, Databricks, AWS

Performance testing Page Speed Insights, Unity Performance testing tools, JMeter

Functional suitability SonarQube, JUnit, Mockito

Usability Matomo, Plausible, Page Speed Insights

Security SonarQube, SecurityHeaders, OWASP Zap

Maintainability SonarQube

Reliability SonarQube

As presented in the table above, in several of the quality characteristics, in order to have a

more reliable and globally accepted measure of code quality, the popular SonarQube [1]

quality gateway was used.

© 101036563 COMPAIR Project Partners 16

SonarQube is an open-source platform developed for continuous inspection of code quality to

perform automatic reviews with static analysis of code to detect bugs, code smells, and

security vulnerabilities on more than 20 programming languages. SonarQube offers reports

on duplicated code, coding standards, unit tests, code coverage, code complexity, comments,

bugs, and security vulnerabilities.

Key features of SonarQube include:

- Static Code Analysis: SonarQube analyses source code to identify security

vulnerabilities, coding best practices, and maintainability issues. It provides actionable

insights and detailed reports to help developers address identified issues.

- Extensive Language Support: SonarQube supports a wide range of programming

languages, including Java, C#, JavaScript, Python, PHP, and many more. This makes

it applicable to a variety of software projects.

- Integration with Development Process: SonarQube integrates with popular

development tools and workflows, such as IDEs, build systems, and CI/CD pipelines.

It provides detailed reports and metrics that can be incorporated into the software

development process to ensure code quality and security throughout.

- Custom Rules and Quality Gates: SonarQube allows users to define custom rules and

quality gates to enforce specific coding standards and security practices within their

projects.

SonarQube in general helps organisations to maintain code quality, identify security

vulnerabilities, and track code improvements over time. It is widely used by development

teams to ensure the long-term maintainability and security of their codebases.

For the purposes of the project, a SonarQube server was deployed in the Data platform of

the project and can be found at https://monitor.wecompair.eu/sonarqube/. The code

deployed in SonarQube, involves software components that were developed for the project.

Performance efficiency

Software component efficiency refers to the measure of how effectively and optimally

individual software components perform their intended functions within a larger system or

application. It encompasses various aspects, including resource utilisation, computational

speed, memory usage, and overall performance. Maximising component efficiency is crucial

for ensuring optimal system performance, minimising resource wastage, and delivering a

seamless user experience.

Monitoring and optimising software component efficiency are essential for maintaining system

performance and scalability. It involves analysing performance metrics and profiling

techniques to identify bottlenecks, optimise algorithms, and fine-tune configuration settings.

By continuously monitoring and improving component efficiency, development teams can

ensure that resources are utilised efficiently, minimising operational costs and maximising the

system's capacity to handle increased workloads.

In this section, we consider tools both for monitoring the performance of the system in real

time and for testing the performance off line.

https://monitor.wecompair.eu/sonarqube/

© 101036563 COMPAIR Project Partners 17

Monitoring

Software component monitoring refers to the practice of closely observing and tracking the

performance, health, and behaviour of individual software components within a larger system

or application. In modern software architectures, applications are often composed of

numerous interconnected components, such as microservices, libraries, databases, and third-

party integrations. Monitoring these components is essential for ensuring optimal system

performance, identifying issues or bottlenecks, and maintaining a high level of reliability.

The primary goal of software component monitoring is to gain real-time insights into the

behaviour and performance of individual software components, as well as their interactions

with other components. This involves capturing and analysing relevant data, such as resource

utilisation, response times, error rates, and other key performance indicators (KPIs). By

monitoring these metrics, development and operations teams can proactively detect and

address potential issues, optimise system performance, and ensure a seamless user

experience.

Monitoring software components often involves the use of specialised tools and technologies

that collect and analyse data from various sources, including logs, metrics, traces, and events.

These tools provide visualisations, alerts, and dashboards that allow teams to monitor the

health of individual components, identify patterns and anomalies, and diagnose the root

causes of performance problems or failures. With comprehensive component monitoring in

place, organisations can improve the overall stability, scalability, and resilience of their

software systems, leading to enhanced user satisfaction and better business outcomes.

Several monitoring tools have been deployed in the physical nodes that comprise the

COMPAIR solution, as described in D4.1 Solution architecture report, in order to keep track

of the user activity and the good operation of the COMPAIR components and sensors in real

time.

These monitoring tools are complemented by custom components that monitor the

communication between data providers and data receivers and react upon the lack of data.

For example, if the Data Manager (deployed in the Data Platform) does not receive traffic data

from the Traffic Sensor Platform in a specific time interval, the incident is recorded and the

relevant technical partner is notified for further investigation.

The monitoring tools used in every COMPAIR node for tracking performance are described

below.

Prometheus and Grafana

Prometheus [2] is an open-source tool under Apache Licence, used for event monitoring and

alerting. It records real time metrics and stores them in a time series database. It features

functionalities like distributed storage, multiple nodes of graphing and dashboarding support

and can collaborate with a wide range of tools like Docker, Kubernetes and Grafana. Although

Prometheus has a user interface of its own (Figure 2), this cannot be used easily by novice

users, so a tool like Grafana is usually suggested in combination.

© 101036563 COMPAIR Project Partners 18

Grafana [3] is an open source and extendable analytics and interactive visualisation web

application that allows a user to query and visualise data, through a set of charts, graphs and

alerts, no matter where this data is stored, e.g. in a database, Prometheus etc.

For the purposes of the project, Prometheus and Grafana are installed in the Data Platform

and monitor the components and APIs deployed there, under

https://monitor.wecompair.eu/prometheus/ and https://monitor.wecompair.eu/grafana/

respectively. Currently the health and performance of the APIs are monitored in real time, that

is, whether the APIs are up and running, if the consumption of memory and CPU is high, the

API’s response times, etc. (figure 3).

Figure 2:Prometheus dashboard

Figure 3: Grafana dashboard for CompAir

https://monitor.wecompair.eu/prometheus/
https://monitor.wecompair.eu/grafana/

© 101036563 COMPAIR Project Partners 19

The AQ CaaS Platform is based on Spark jobs that perform the data collection and processing.

These jobs are configured in the Databricks [4] tool, which is a powerful cloud-based data

engineering and data science platform that simplifies the process of building, managing, and

scaling big data and artificial intelligence (AI) applications. It is designed to provide an

integrated environment for data processing, analytics, and machine learning, however it also

provides monitoring capabilities to help track the performance, health, and resource utilisation

of the data processing and analytics workloads. These monitoring features allow an

administrator to gain insights into the behaviour and efficiency of the Databricks clusters and

jobs.

Some key monitoring operations that Databricks supports include:

- Cluster Monitoring: Databricks provides a Cluster UI that allows the monitoring of the

performance and resource utilisation of the Spark clusters, providing information for

metrics such as CPU and memory usage, disk I/O, network activity, and job execution

statistics. This information helps to understand the workload patterns and identify

potential bottlenecks or performance issues.

- Job Monitoring: Databricks allows the monitor of the execution of Spark jobs running

on the clusters. Someone can track job progress, view detailed logs, and monitor job-

specific metrics such as task duration, data shuffle operations, and resource

consumption. Monitoring job performance helps in optimising job execution and

identifying any errors or issues during the process.

- Alerting and Notifications: Databricks supports alerting and notification mechanisms to

keep informed about important events and conditions. An admin can configure alerts

based on specific metrics thresholds or job status changes. When an alert condition is

triggered, the assigned person receives notifications via email or other channels,

enabling proactive monitoring and timely response to critical situations.

- Integration with External Monitoring Tools: Databricks can integrate with external

monitoring and logging systems such as Azure Monitor, Amazon CloudWatch, and

Datadog. This integration allows an admin to centralise the monitoring efforts and

leverage existing tools and workflows for data platform monitoring.

By monitoring the Databricks jobs, an admin can gain valuable insights into their performance,

identify optimization opportunities, and troubleshoot any issues that arise. Effective monitoring

helps ensure the smooth functioning of the data processing workloads and helps in making

informed decisions regarding resource allocation and workload management.

In the context of COMPAIR, the jobs are used mainly as pipeline elements to:

- Ingest data from different sources (e.g. Discomap and Sensor.Community)

- Transform the custom format they use into OGC SensorThings API standard

- Forward data to Data Manager

- Store in a separate storage for calibration purposes

An example of these jobs is presented in Figure 4.

© 101036563 COMPAIR Project Partners 20

Figure 4: CaaS Databricks

The Traffic Sensor Platform (run by Telraam) utilises a custom web application [5] to provide

sensor information to visitors and to allow the administrators to monitor the health of the

sensors. This “Telraam network management dashboard” clusters devices & users at a (sub-

project level). It is governed by a local project lead. Functionalities include:

- Status of user in the installation process: selected/device received/device

installed/device inactive/etc)

- Telemetry data of the sensor: timestamp of sensor events such as reboots, display

on/off input, data connection signal strength, firmware version, user action log, etc.

- Thumbnail snapshot: low resolution picture of the view on the street, to verify correct

installation of the sensor

Below we present three screenshots of the dashboard:

Figure 5:Telraam Network dashboard

© 101036563 COMPAIR Project Partners 21

Figure 6:Telraam Diagnostics

Figure 7:Sensor Data

© 101036563 COMPAIR Project Partners 22

For health monitoring of the internal components and databases of the Traffic Sensor Platform,

the AWS Health tool [6] is used. AWS Health is a service provided by Amazon Web Services

(AWS) that offers insights and notifications regarding the operational health and performance

of AWS resources and services. It provides real-time information, proactive notifications, and

remediation guidance to help users maintain the availability, security, and performance of their

AWS infrastructure.

AWS Health monitors the status of various AWS services and regions and provides a

centralised dashboard where users can view the overall health status of their resources. It

offers several key features:

1. Personalised Dashboards: AWS Health provides personalised views of the health

status and events specific to a user's AWS account. It highlights ongoing and historical

events, proactive recommendations, and maintenance notifications.

2. Event Notifications: Users can configure AWS Health to send proactive notifications

via email, SMS, or other communication channels when there are service disruptions

or other events that may impact their resources. In the case of Telraam, we monitor

load on Lambda functions from data-ingestion (API-gateway) to database.

3. Event History and Analysis: The service maintains an event history that users can

reference to understand past incidents, their duration, and the impact on their

resources. This allows for analysis and post-incident evaluations.

4. Trusted Advisor Integration: AWS Health is integrated with AWS Trusted Advisor,

which provides automated recommendations for optimising AWS resources and costs.

Users can access Trusted Advisor recommendations directly from the AWS Health

console.

5. API Integration: AWS Health provides an API that allows users to programmatically

retrieve information about the health status of their resources. This enables integration

with custom monitoring and notification systems.

AWS Health is particularly useful for organisations that rely on AWS services for their

infrastructure. It helps users stay informed about the status of their resources, receive timely

notifications about service disruptions or maintenance events, and take proactive measures

to mitigate any impact on their applications or business operations. By leveraging AWS Health,

users can enhance their operational awareness, reduce downtime, and improve the overall

resilience of their AWS deployments.

Figure 8: Telraam AWS Health

© 101036563 COMPAIR Project Partners 23

The SODAQ AIR is a portable air quality monitor designed for bicycle users that provides real-

time, location-specific air quality insights. Equipped with an array of sensors, the AIR provides

in-depth readings on particulate matter (PM) concentrations, temperature, and humidity

creating a holistic representation of the air quality.

To anyone interested in air quality, the Know Your AIR Map provides a global perspective on

air quality. The aggregation of all the data in a 100×100 metre area, is averaged on an hourly

basis and uploaded to the global map as open data. This creates a network of detailed air

measurements across the globe while protecting user anonymity. All of the collective air quality

measurements are shared as open-source data giving everyone, everywhere access.

Figure 9: Know Your Air Map

In addition to that, users of the SODAQ Air can see the air quality of their own routes by

inputting with their device's unique identifier code. This enables the users to track the air

quality during their bicycle trips and to consider taking alternative routes to reduce their

exposure to polluted air.

The third option, which is provided, is to forward all the data generated by the AIR devices to

(generally larger) customers. Within COMPAIR SODAQ is forwarding the SODAQ AIR data

from each of the pilots to the COMPAIR platform for data interpretation and representation.

Just like Telraam, SODAQ runs its cloud services in an AWS environment. For more

information on cloud services in AWS, reference is made to the description (above) about

Telraam. The data from the individual Air sensors is received on a Node Red server in the

SODAQ AWS environment. From the Node Red server the data is forwarded both to the

knowyourair platform and to the CompAir server, as represented below.

© 101036563 COMPAIR Project Partners 24

Figure 10: cloud services

As an additional service, the knowyourair platform allows users and user groups to check the

status of their devices. All CompAir devices are part of a subgroup and can thus be selected

and monitored: https://knowyourair.net/reports/status/ Based on the device IMEI, a quick

individual health check can be done: https://knowyourair.net/device/status/

Performance testing tools

Page Speed Insights

Page Speed Insights [7] is a tool developed by Google to assess and provide insights into the

performance and speed of web pages. It analyses web pages and generates reports with

suggestions and recommendations to improve their speed and overall user experience.

Page Speed Insights evaluates the performance of a web page on both mobile and desktop

devices. It measures various aspects that contribute to page load times, including server

response times, render-blocking resources, image optimization, CSS and JavaScript

efficiency, and caching practices.

The tool assigns a score to each page, ranging from zero to 100, indicating its performance

level. A higher score signifies better performance and faster page load times. Additionally,

Page Speed Insights provides specific recommendations on how to optimise the page,

highlighting areas that need improvement.

The insights provided by Page Speed Insights can help website owners and developers

identify performance bottlenecks and implement optimizations to enhance the speed and

responsiveness of their web pages. By following the recommendations, such as minimising

file sizes, leveraging browser caching, or eliminating render-blocking resources, websites can

provide a smoother user experience, reduce bounce rates, and potentially improve search

engine rankings.

https://knowyourair.net/reports/status/
https://knowyourair.net/device/status/

© 101036563 COMPAIR Project Partners 25

Page Speed Insights is a widely used tool by web developers, SEO professionals, and website

administrators to measure and enhance the performance of their web pages. Its goal is to

encourage the development of faster, more efficient websites that provide a better user

experience across different devices.

In the context of the project, Page Speed Insights is used to test the performance of the

Dashboards developed so far and their accessibility degree.

JMeter

JMeter [8] is an open-source performance-testing tool developed by the Apache Software

Foundation. It is designed to load test functional behaviour and measure the performance of

web applications, APIs, and other types of software systems.

Some key features and aspects of JMeter are:

1. Load Testing: JMeter allows testers to simulate high user loads by creating virtual

users (threads) that send requests to the target system. It can generate large amounts

of concurrent requests, helping assess how the system performs under different levels

of load.

2. Protocol Support: JMeter supports a wide range of protocols, including HTTP, HTTPS,

FTP, SOAP, REST, JDBC, JMS, and more. It can be used to test various types of

systems, including web applications, databases, message queues, and web services.

3. Test Plan Creation: JMeter uses a graphical user interface (GUI) to create and

configure test plans. Testers can define scenarios, set up thread groups, specify

requests and parameters, and add assertions to validate responses. The tool also

provides scripting capabilities for complex scenarios.

4. Test Execution and Monitoring: Once the test plan is set up, JMeter can execute the

load test and monitor various performance metrics in real-time. It captures response

times, throughput, error rates, and other key performance indicators. Testers can view

the results in various formats, including graphs, tables, and reports.

5. Distributed Testing: JMeter supports distributed testing, allowing multiple JMeter

instances to work together and generate high loads from different machines. This

enables testers to simulate realistic scenarios with a distributed user base.

6. Extensibility: JMeter offers extensibility through its plugin architecture. Users can

extend its functionality by installing additional plugins that provide features such as

additional listeners, samplers, and scripting capabilities.

7. Integration with CI/CD: JMeter integrates well with continuous integration and delivery

(CI/CD) pipelines. It can be automated and incorporated into the testing phase of the

software development lifecycle, enabling performance testing as part of the

deployment process.

Overall, JMeter is a powerful tool for load testing and measuring the performance of software

systems. Its flexibility, protocol support, and extensibility make it suitable for a wide range of

testing scenarios. Whether you need to assess the performance of a web application, API, or

other types of systems, JMeter provides a robust solution for load testing and performance

analysis.

© 101036563 COMPAIR Project Partners 26

In the context of the project, JMeter is used to measure the performance of the APIs under

certain conditions, e.g. certain number of simultaneous users.

Functional suitability

To ensure functional suitability, organisations employ various testing techniques and tools. In

the context of the project, we utilise unit and integration tests.

Unit tests and integration tests are two distinct types of tests used in software development to

validate the functionality and behaviour of different components or units of code.

Unit tests focus on testing individual units or components of code in isolation. These units are

typically small and represent a specific functionality or behaviour within the software. Unit tests

help ensure that each unit of code behaves as expected and meets its functional requirements.

By testing units in isolation, developers can easily identify and fix bugs or issues at an early

stage.

Integration tests, on the other hand, aim to test the interaction and integration between multiple

units or components of code. They validate that these components work correctly together,

exchanging data and communicating as intended. Integration tests help uncover issues that

may arise when different parts of the system are integrated and can help identify problems

related to data flow, API interactions, or dependencies between components.

Several frameworks exist that realise the unit and integration tests, depending on the

programming language used for the developed component.

JUnit

JUnit [9] is a popular testing framework for Java that is widely used for writing and executing

unit tests. It provides a set of annotations, assertions, and APIs that make it easy to define

and run test cases. JUnit allows developers to create test methods that verify the behaviour

and output of individual units of code. It provides features for test setup and teardown, test

fixture management, and reporting of test results.

Mockito

Mockito [10], on the other hand, is a mocking framework for Java that is often used in

conjunction with JUnit. Mockito helps create mock objects that simulate the behaviour of

dependencies or collaborators in unit tests. By using Mockito, developers can isolate the unit

under test and control the behaviour of external dependencies, making it easier to write

focused and deterministic unit tests. Mockito provides features for defining mock objects,

setting expectations, and verifying interactions with these objects during testing.

Both JUnit and Mockito are powerful tools in the Java ecosystem for writing effective unit tests.

They contribute to the overall quality and reliability of the codebase by allowing developers to

validate individual units and their interactions, catch defects early, and provide a safety net for

refactoring of code changes.

© 101036563 COMPAIR Project Partners 27

Security

Software security refers to the practice of protecting software systems and applications from

unauthorised access, data breaches, vulnerabilities, and other malicious activities. It involves

implementing measures to prevent, detect, and mitigate security risks throughout the software

development lifecycle. By prioritising security, organisations can safeguard sensitive data,

maintain user trust, and reduce the likelihood of security incidents that can result in financial

losses or reputational damage.

So far, three main tools have been used to evaluate the security of the system, SonarQube to

evaluate the security of the code, OWASP Zap [11] to evaluate the security of the dashboards

and APIs and security headers to have a quick indication on the security of the web

applications against specific attacks.

OWASP Zap

OWASP Zap is a free and open-source web application security scanner and penetration

testing tool, provided by the Open Web Application Security Project (OWASP) which is a

nonprofit foundation dedicated to improving software security. It helps identify vulnerabilities

and security issues in web applications. Zap can be used by both developers and security

professionals to perform various security testing activities, including:

- Automated Scanning: Zap can scan web applications to detect common vulnerabilities

like cross-site scripting (XSS), SQL injection, broken authentication, insecure direct

object references, and more.

- Manual Testing: It provides a user-friendly interface for manually testing and exploring

web applications, enabling users to intercept and modify requests, analyse responses,

and manipulate application parameters.

- Active and Passive Scanning: Zap can actively scan web applications by automatically

sending requests and analysing responses. It can also passively monitor traffic to

identify potential security issues.

- Scripting and Automation: Zap supports scripting and automation through its powerful

API, allowing users to create custom tests and integrate Zap into their continuous

integration (CI) pipelines.

OWASP Zap is well-documented, actively maintained by the OWASP community, and

regularly updated with new security checks and features. It is a versatile tool that helps identify

and address security vulnerabilities in web applications.

Security Headers

The Security Headers tool [12] is an online service that allows you to analyse the security

headers implemented on a website. Security headers are HTTP response headers that

provide additional security measures to protect web applications against various types of

attacks. This tool helps in assessing the security posture of a website by examining the

presence and configuration of these security headers.

Some key features of the tool include:

© 101036563 COMPAIR Project Partners 28

- Analysis of Security Headers: The tool performs a scan of the website's HTTP

response headers and identifies the presence and configuration of important security

headers such as Content Security Policy (CSP), X-XSS-Protection, X-Frame-Options,

Strict-Transport-Security (HSTS), and more. It checks if the headers are properly set

up, correctly configured, and follow security best practices.

- Security Recommendations: The tool provides recommendations and guidance on

improving the security of the website based on the analysis of the security headers. It

highlights any missing or misconfigured headers and suggests appropriate

configurations to enhance the security posture. This helps website owners and

developers take proactive measures to strengthen their website's security.

- User-Friendly Reporting: The Security Headers tool generates a detailed report that

summarises the findings of the analysis. The report includes information on each

security header, its configuration status, and any recommendations for improvement.

This makes it easy to understand and communicate the security status of the website

to stakeholders, developers, or security teams.

Using the Security Headers tool can help website owners and developers identify and address

potential security vulnerabilities in their web applications. By ensuring proper configuration

and implementation of security headers, they can mitigate risks associated with attacks such

as cross-site scripting (XSS), clickjacking, content injection, and session hijacking.

Usability

An important aspect of software usability is the user interface (UI) design. A well-designed UI

considers user behaviour, cognitive abilities, and task requirements to create a visually

appealing and intuitive interface. It involves elements such as layout, navigation, controls,

feedback mechanisms, and information organisation to enable users to interact with the

software seamlessly. To this end, UX heuristics and accessibility rules are widely used.

UX heuristics, also known as usability heuristics or Nielsen's heuristics, are a set of broad

guidelines or principles that are used to evaluate and assess the usability of user interfaces.

They were first introduced by renowned usability expert Jakob Nielsen and have become

widely adopted in the field of user experience design.

Heuristics serve as a framework for identifying potential usability issues and areas for

improvement within a user interface. They provide a set of criteria that designers and

evaluators can apply to assess the overall usability and user-friendliness of a product or

system.

To ensure that web content is accessible to a wide range of people, including those with

disabilities, the World Wide Web Consortium (W3C) has issued a series of internationally

recognised guidelines with the name Web Content Accessibility Guidelines 2.1 (WCAG 2.1).

The primary goal of WCAG 2.1 [13] is to make web content perceivable, operable,

understandable, and robust for all users, including those with visual, auditory, physical,

cognitive, and neurological disabilities. It provides technical standards and guidance for web

developers, designers, content authors, and others involved in creating and maintaining web

content.

© 101036563 COMPAIR Project Partners 29

Usability testing is a common practice in evaluating and improving software usability. It

involves observing real users as they perform tasks with the software and collecting feedback

to identify areas of improvement. Usability testing helps uncover usability issues, such as

confusing workflows, unclear instructions, or inefficient processes, which can then be

addressed to enhance the overall usability of the software.

It is worth noting that automated tools for evaluating the overall usability of a web application

based on UX heuristics alone can be challenging to find. Usability evaluation often requires a

combination of techniques, including expert reviews, usability testing, user feedback and user

monitoring, to gain a comprehensive understanding of the usability of a web application.

In the context of the project, we are following the UX heuristics and accessibility guidelines

during the design and implementation of the Dashboards and we are using tools for testing

the accessibility compliance and also for user behaviour monitoring. More precisely, we are

using ColorBlindly [14] for making sure that the UIs are accessible to people with some form

of colorblindness, PageSpeed Insights to measure the degree of accessibility compliance and

Matomo [15] for monitoring the user behaviour in the project’s Dashboards and DEVA.

Colorblindly

Colorblindly is a Chrome extension that helps developers create websites for the people with

colorblindness by allowing them to simulate the experience those users have on websites.

There are eight different settings to experience based on the different types of colour

blindness:

- Blue Cone Monochromacy / Achromatomaly

- Monochromacy / Achromatopsia

- Green-Weak / Deuteranomaly

- Green-Blind / Deuteranopia

- Red-Weak / Protanomaly

- Red-Blind / Protanopia

- Blue-Weak / Tritanomaly

- Blue-Blind / Tritanopia

PageSpeed Insights

For measuring the accessibility of a web site, PageSpeed Insights uses behind the scenes, a

tool called Lighthouse [16] also developed by Google. Lighthouse is an automated testing tool

built into the Chrome browser's DevTools. While it is primarily designed for performance and

best practices audits, it also includes accessibility testing capabilities based on WCAG 2.1

guidelines. Lighthouse generates an accessibility report that outlines areas of improvement

and provides suggestions for addressing accessibility issues.

Matomo

Matomo is a free open source web analytics application similar to Google Analytics. The key

difference is that the application is provided as a Docker image and thus can be easily installed

© 101036563 COMPAIR Project Partners 30

to a server keeping the data private within the consortium, allowing for better application of

the GDPR rules.

Matomo can be used for monitoring the user actions in web sites or mobile devices providing

information like page views, button clicks etc., by adding the code snippet provided by Matomo

or using the appropriate library based on the programming language of the application. The

Dashboards of the project are developed using the React JS framework so the Matomo

Tracker [17] npm library is used while the DEVA application, which is implemented with

Unity3D, utilises the Unity Matomo library [18].

These libraries enable more monitoring features, for example, the Unity Matomo library can

track and analyse user sessions and behaviour by sending compatible metadata within the

Unity application as produced from common web browsers and customising events simulating

a navigation in the app like in a website. In this case, various elements of the application can

be used like the Hamburger menu, the top bar, the toolbar (and its toolbox), the configuration

windows, individual functions and data filters, etc.

Matomo, as a web analytics tool, provides valuable insights into user behaviour and

engagement on a website or application. It helps organisations understand how users navigate

through their site, which pages are visited most frequently, how long visitors stay on certain

pages, and how they interact with various elements. These metrics contribute to evaluating

the usability of the system by identifying areas that may require improvement, enhancing the

user experience, and optimising the overall design and flow of the website or application.

For the purposes of the project, Matomo is installed in the Data Platform under

https://matomo.wecompair.eu/ and currently four sites have been configured, one for every

dashboard and DEVA. For the moment, the applications gather basic information page views,

location of the visitors, etc. as depicted in Figure 11:Matomo statistics, but more types of

information can be monitored in future releases upon pilot request.

Figure 11:Matomo statistics

https://matomo.wecompair.eu/

© 101036563 COMPAIR Project Partners 31

2.3 Evaluation results

This section provides an overview of the preliminary results for the current prototype in the

different areas described in the validation methodology.

Performance

In this section, we present the results from the performance tests conducted by using the Page

Speed Insights for the Dashboards, and the JMeter tool for the services of the project. The

following table presents the results performed for the COMPAIR dashboards as these are

derived from the Page Speed Insights tool. In this table, we present the overall score the

Dashboard received from the tool and the relevant values and scores of the sub metrics used

to derive this score. The thresholds are 0-49 Poor, 50-89 Moderate, 90-100 Good

More precisely, the metrics used to calculate the overall score are:

● First Contentful Paint (FCP): Measures the time from when the page starts loading

to when any part of the page's content is rendered on the screen. For this metric,

"content" refers to text, images (including background images), <svg> elements, or

non-white <canvas> elements. To provide a good user experience, sites should strive

to have a First Contentful Paint of 1.8 seconds or less. It weights in the final score by

default by 10%

● Speed Index (SI): Measures how quickly content is visually displayed during page

load. The thresholds are 0-3.4 sec (Fast), 3.4-5.8 sec (Moderate), 5.8 and above

(Slow). It weights in the final score by default by 10%

© 101036563 COMPAIR Project Partners 32

● Largest Contentful Paint (LCP): Represents how quickly the main content of a web

page is loaded. Specifically, LCP measures the time from when the user initiates

loading the page until the largest image or text block is rendered within the viewport.

To provide a good user experience, sites should strive to have an LCP of 2.5 seconds

or less for at least 75% of page visits. It weights in the final score by default by 25%

● Total Blocking Time (TBT): Measures the amount of time during which Long Tasks

(all tasks longer than 50ms) block the main thread and affect the usability of a page.

The main thread is "blocked" because the browser cannot interrupt a task that is in

progress. Therefore, in the event that a user does interact with the page in the middle

of a long task, the browser must wait for the task to finish before it can respond. To

provide a good user experience, sites should strive to have a Total Blocking Time of

less than 200 milliseconds. It weights in the final score by default by 30%

● Cumulative Layout Shift (CLS): It is an important, user-centric metric for measuring

visual stability because it helps quantify how often users experience unexpected layout

shifts—a low CLS helps ensure that the page is delightful. To provide a good user

experience, sites should strive to have a CLS score of 0.1 or less. It weights in the final

score by default by 25%

Overall, as presented in the table, all the project’s Dashboards fall into the Moderate category,

with the CO2 Dashboard however requiring the most effort to improve its performance based

on the recommendations of the tool.

https://web.dev/user-centric-performance-metrics/#questions

© 101036563 COMPAIR Project Partners 33

Table 2:Dashboard performance scores

Dashboard Performance

score

FCP SI LCP TBT CLS

PMD 91/100

Good

270 ms

100/100

1249 ms

92/100

1585 ms

78/100

144 ms

91/100

0,02

100/100

CO2 54/100

Moderate

730 ms

97/100

2806 ms

33/100

3118 ms

31/100

513 ms

28/100

0.02

100/100

Monitoring 75/100

Moderate

524 ms

100/100

1706 ms

75/100

2693 ms

42/100

193 ms

82/100

0,09

92/100

Figure 12:PMD Performance Score

© 101036563 COMPAIR Project Partners 34

Figure 13:CO2 Performance Score

Figure 14: Monitoring Performance Score

In order to evaluate the overall performance and scalability of the web services of the

COMPAIR Data Platform involved in the user interfaces, we have examined the overall

response times of several of these services in various scenarios.

To implement the performance tests, we used the services running on the production server

of COMPAIR, which has the following specifications:

- runs an Ubuntu 20.04 LTS

- 16 cores CPU AMD's Ryzen™ 9 5950X

- 128GB DDR4 ECC RAM

- 2 x 3.84 TB NVMe SSDs

© 101036563 COMPAIR Project Partners 35

We have tested the services considering a 10 seconds spike in the load, that is, all the

simulated users arrive within this period of 10 seconds evenly distributed, e.g. if we consider

100 users in a period of 10 seconds, this means 10 users every second making all the service

calls under test.

The following tables present the results of the web tests for the selected number of users. The

first column shows the services that were tested, while the rest of the columns represent the

various metrics measured by JMeter. More specifically, through JMeter the following results

are retrieved:

- Service - The web service that has been tested;

- Samples - The number of users for the service;

- Average - The average time of response of a set of results;

- Min - The shortest time of response for the samples of the service;

- Max - The longest time or response for the samples of the service;

- Throughput – the throughput is measured in requests per time unit

(second/minute/hour) and in Kbytes/sec

The scenarios under consideration are:

- Exploring the sensors in the PMD, which involves selecting a source type e.g. PM2.5,

then selecting a sensor and viewing the hourly or weekly statistics.

- Exploring the projects in the Monitoring Dashboard, which involves retrieving all the

available projects, selecting one and retrieving the relevant statistics.

- Exploring the DEVA, which includes retrieving the devices and sensors and requesting

for observations of a certain type.

The following tables present the results of stress tests performed in various APIs of the

COMPAIR system, following the scenarios above, using the JMeter tool. For the purposes of

the test, we considered two cases for 100 and 300 simultaneous users, a high number

compared to the project’s needs.

Table 3: PMD exploring the sensors - stress tests

Component Samples Min

(ms)

Max

(ms)

Avg

(ms)

Throughput

PMD - Exploring the sensors

 Data Manager

(/data/sensors/observations/type/)

100 515 689 617 9.5/sec

 Data Manager

(/data/sensors/observations/type/)

300 802 23975 10065 10.9/sec

Data Manager

(/data/sensors/thing/)

100 77 120 84 10.0/sec

Data Manager

(/data/sensors/thing/)

300 77 13599 285 11.3/sec

© 101036563 COMPAIR Project Partners 36

Data Manager

(/data/sensors/distributions)

100 91 153 112 10.0/sec

Data Manager

(/data/sensors/distributions)

300 96 7548 534 11.3/sec

Data Manager

(/data/sensors/inactive)

100 104 182 125 10.0/sec

Data Manager

(/data/sensors/inactive)

300 102 10739 318 11.3/sec

Data Manager

(/data/sensors/timeseries)

100 101 143 114 10.0/sec

Data Manager

(/data/sensors/timeseries)

300 173 27467 1926 10.6/sec

Table 4: Monitoring Dashboard - Exploring the projects - stress tests

Component Samples Min (ms) Max (ms) Avg (ms) Throughput

Monitoring Dashboard - Exploring the projects

 Data Manager
(/data/project/all?status=public)

100 325 338 333 9.8/sec

 Data Manager
(/data/project/all?status=public)

300 445 19615 4297 20.6/sec

Data Manager (/data/project/) 100 379 402 389 9.7/sec

Data Manager (/data/project/) 300 658 12999 2036 19.4/sec

Data Manager
(/data/sensors/aggregations-

summary/)

100 324 443 335 9.8/sec

Data Manager
(/data/sensors/aggregations-

summary/)

300 435 12438 4394 16.9/sec

Data Manager
(/data/sensors/aggregations-

summary/)

100 269 443 335 9.9/sec

Data Manager
(/data/sensors/aggregations-

summary/)

300 305 11460 4862 17.0/sec

Table 5: Exploring DEVA - stress tests

© 101036563 COMPAIR Project Partners 37

Component Samples Min
(ms)

Max
(ms)

Avg
(ms)

Throughput

DEVA - Exploring the DEVA

DEVA Manager (/deva/sensors/things) 100 256 376 270 9.8/sec

DEVA Manager (/deva/sensors/things) 300 248 430 306 29.5/sec

DEVA Manager (/deva/sensors/) 100 89 198 101 10/sec

DEVA Manager (/deva/sensors/) 300 90 174 112 29.9/sec

DEVA Manager
(/deva/sensors/observations/type/PM_2p5)

100 80 192 91 10/sec

DEVA Manager
(/deva/sensors/observations/type/PM_2p5)

300 78 148 100 29.9/sec

Overall, the average response time of the services is within accepted ranges in most cases,,

based on the requirements of UX as defined by Jakob Nielsen [19], with a few exceptions that

need to be improved. According to these requirements, the limits are:

- 0.1 second is the limit that the user feels that the system is reacting instantaneously

- 1 second is the limit that user's flow of thought stays uninterrupted

- 10 seconds is the limit for keeping the user's attention

Although the limits were set for the response time of a UI, we can also use them also for the

response times and APIs and thus several solutions can be investigated in the rest of the

project to improve the performance of the services, e.g. by:

- The development of a caching mechanism at least for the most common API calls.

- Improving the underlying algorithms, utilising also parallel programming

- Increasing the instances of the services and load balance further

- Identifying the most frequent queries in the database and use more indexes, etc.

DEVA

As mentioned, the DEVA will be evaluated for this category, in terms of frame rate, latency of

processing the data, data transfer and data consumption.

The results presented here differ from call to call, depending on the process running on the

device (background activities, services etc.) and the current connectivity to the Data Manager

(speed of connection, type of connection, and internet loads). Therefore, the results in the

tables below are rounded or average values.

Frame rate

Depending on the application mode, i.e. the visualisation style or the time range of the

observations (and amount of data), the render speed may differ.

© 101036563 COMPAIR Project Partners 38

The speed shall also differ for different mobile devices with different CPU and GPU (graphic

processor) on it. Devices are classified in three groups: Basic range, mid-range and high

range. Inside these groups, many distinctions and types exist making a comparison between

all kinds of phones and tablets complicated. For the first metric, we used a mobile phone and

a tablet.

Unity3D offers the possibility to measure frames per second in (fps, in Hz). For the current

implementation, the following figures were retrieved from the tool for these scenarios:

- No user movement, no rotation:

User is staying at position (+/- 1 metre), targeting a fixed direction.

- No user movement, with rotation:

User is staying at position (+/- 1 metre); looking around.

- Slow movement, no rotation:

User is walking straight forward, targeting a fixed direction.

- Slow movement, with rotation:

User is walking straight forward, looking around.

- Quick movement, no rotation:

User is running/driving a bicycle, not looking around.

The results demonstrate that under various usage conditions, the render speed is always fast

enough to provide a responsive visualisation. While looking around, the speed mainly stays

the same then without this pivot because all the data surrounding the user are loaded, no

matter at which direction the user is oriented. By walking quickly, running or driving the system

has additionally to sort data for the Near-n-Far view mode (if active).

The result was produced for two different mobile devices: a smartphone of type Huawei P30

(mid-range) and a tablet of type Samsung GALAXY S8 (high range) using an extreme scenario

(visualising 1.000 values around the users). The result in fps is given for both devices: P30 /

S8. To show the difference between a Sphere S (low complex geometry), the Pin visual P

(middle complex geometry) and the Display visual D (high complex geometry) the results are

mentioned in the table (S and P values, without Near-n-Far mode).

© 101036563 COMPAIR Project Partners 39

Table 6:FPS of DEVA for various scenarios

Scenarios FPS (looking straight ahead)

1.000 Values

P30 / S8

FPS (looking around)

1.000 Values

P30 / S8

 User doesn’t move S: 30 Hz / 30 Hz

P: 26 Hz / 27 Hz

D: 16 Hz/ 17 Hz

S: 29 Hz / 30 Hz

P: 26 Hz / 26 Hz

D: 15 Hz / 17 Hz

Slow movement

(walking)

S: 30 Hz / 30 Hz

P: 25 Hz / 25 Hz

D: 15 Hz / 15 Hz

S: 29 Hz / 30 Hz

P: 24 Hz / 24 Hz

D: 15 Hz / 16 Hz

Quick movement

(running, driving)

S: 30 Hz / 30 Hz

P: 23 Hz / 24 Hz

D: 14 Hz / 15 Hz

Not applicable

If the system slows down too much (< 10 fps), an idea should be to disable the Near-n-Far

mode when the movement of the device exceeds a speed. This should be implemented in a

future version.

Remark:

- Activating the Gamification mode (currently implemented as a simple graphical

extension, currently only available for the Display mode) will decrease the frame rate

by approx. 1 frame. By increasing the complexity, the frame rate should decrease

further.

- Activating the Near-n-Far mode speeds up the rendering because the far observations

are rendered as spheres.

- The results always include the rendering of the GUI. Those elements are not very

complex, Unity uses mainly simple squares with static textures to render them.

- When using 100 observation values, the frame rate stays stable by 30 Hz no matter

which visualisation style was selected.

Latency

Within Unity3D, there is the possibility to measure run-times for different parts of the

application such as time for initialisation, loading the user profile, loading times for

observations/sensor data and the processing in the DEVA pipeline. Those measurements

provide an additional indication about the responsiveness of the application.

Latency depends also from the type of communication: The usage of wi-fi, 4G or 5G, and the

kind of contract the user has with his provider, has a big impact over the download speed.

© 101036563 COMPAIR Project Partners 40

The CPU and the range of the device (basic, mid, high; see “Frame rate”) also influence the

speed of processing, especially the processing of data in the pipeline. The same devices

should be used as before. To show the difference between a Sphere S (simple geometry) and

the Display visual D (high complex geometry with many sub objects) both results are

mentioned in the table (S and D values).

The following measurements where retrieved from the app:

Table 7:Latency of DEVA for various scenarios

Scenarios 100 Values, in ms
P30 / S8

1.000 Values, in ms
P30 / S8

Ping to the Data Manager
(ping aver JSON)

 100 ms / 100 ms 100 ms / 100 ms

Querying data from Data
Manager

(Observations)

 225 ms / 233 ms 2250 ms / 2328 ms

Preparing the data for the
pipeline

(Instantiate AR geometries)

S: 50 ms / 44 ms
 D: 170-240 ms / 190 ms

S: 300 ms / 170 ms
D: 3500 ms / 2200 ms

Updating the pipeline
(Changing AR visuals…)

S: 42 ms / 4 ms
D: 94 ms / 28 ms

S: 680 ms / 35 ms
D: 1250 ms / 300 ms

Changing the Near-n-Far
distance

S: 7 ms / 6 ms
D:18-25 ms / 4-20 ms

S: 35 ms / 25-30 ms
D: 120-340 ms / 40-300 ms

Deleting the data
(e.g. to reset the pipeline)

S: 12 ms / 11 ms
D: 42 ms / 35 ms

S: 40 ms / 36 ms
D: 446 ms / 349 ms

Here, in comparison to the fps, the amount of data has a significant impact on the latency,

because the data has to be read, transposed by the pipeline and the resulting graphical objects

created by Unity. Depending on the visual style of an observation (simple 3D sphere to

complex display with text, icons and graphic), the scene graph is less or more complex.

Remark:

- The results ignore the first calls to the Data Manager needing more times for the same

request.

- Changing the value of the Near-n-Far distance using a complex visual (e.g. Display)

will affect the latency because far data is rendered as simple spheres.

Data consumption

The DEVA visualises environmental data that are stored on a server and managed by the

Data Manager. Depending on the user position and the movement of the mobile AR device,

new data requests are sent from DEVA to the Data Manager in order to get an update of the

measurements in the surrounding area.

© 101036563 COMPAIR Project Partners 41

The number of sensors and measurements in the neighbourhood is quite small and in the

order of several dozen measurements. Taking the data protocol currently implemented into

account just a few Kbytes of data are required to get an update. As described in the section

on monitoring DEVA, the amount of data per request and the number of requests can be

monitored. The resulting figures will provide details that are more accurate as soon as the app

is distributed to the pilot partners and in use.

The following measurements where retrieved from the logs of the app (for the same scenarios

as before):

Table 8: Data consumption for various scenarios

Scenarios Package Size (JSON)
100 Values

Package Size (JSON)
1.000 Values

Package Size (JSON)
10.000 Values

Querying
Observations

17,67 KB 176,72 KB 1,72 MB

Querying
Sensors

14,35 KB 143,55 KB 1,40 MB

Querying
Things

18,76 KB 187,66 KB 1,76 MB

Querying hypothetical 100 things, each with two sensors and N observation values result in a

payload of approx.:

- for N=100 observations per sensors:

18,76 (things) + 2 x 14,35 (sensors) + 200 x 17,67 (observations) = 3,49 MB

- for N=1.000 observations per sensors:

18,76 (things) + 2 x 14,35 (sensors) + 200 x 176,72 (observations) = 34,56 MB

Remarks:

(1) The size of packages depends a lot on the content of some attributes like textual

information: name, description and unit. Other values like integer and float numbers (id,

observation values, GPS locations) as well as Boolean values (yes/no) are more of a constant

size.

(2) Extending the OpenAPI protocol in future development stages (e.g. adding more attributes)

shall also affect the payloads considerably.

© 101036563 COMPAIR Project Partners 42

Functional suitability

In this section, we present the results for the functional suitability of various components and

dashboards based on the measurements gathered from SonarQube regarding unit /

integration tests and code coverage. As a target, we have set an overall code coverage for

the backend components at least 40% and for the dashboard at least 20%. The reason that

the dashboards have a lower percentage is that they contain many files that are related to the

presentation of the UI but not the interaction with the user, so there is an increase in the total

number of lines that cannot be tested. In any case, as we progress with the project, more tests

will need to be implemented in order to achieve the required threshold.

Table 9:Functional suitability measurements

Component Unit tests Overall Coverage

 Data Manager 39 78,3%

User Manager 6 40,5%

Deva Manager 14 82,2%

PMD 9 21,3%

CO2 Dashboard 2 0.1%

Monitoring Dashboard 3 9,5%

Compatibility

All the components in the COMPAIR project use well established communication protocols to

exchange information. The main mode of communication is performed through JSON REST

web services, a type of web service that enables communication and data exchange between

different software applications over the internet. JSON (JavaScript Object Notation) is a

lightweight data interchange format that is commonly used for structuring and transmitting data

in web services.

JSON Web Services are commonly used in various scenarios, such as retrieving and updating

data from remote servers, integrating different applications or systems, and building web and

mobile applications that consume data from external sources.

Overall, JSON Web Services provide a flexible and lightweight approach for applications to

exchange data and functionality, enabling interoperability and integration between disparate

systems and platforms.

Additionally, for the collection of the sensor data, we define the structure of the messages

based on the OGC SensorThings standard [20]. OGC SensorThings is an open standard

developed by the Open Geospatial Consortium (OGC) that focuses on enabling the

interoperable discovery, querying, and integration of real-time sensor data from diverse

sources. It provides a standardised framework for managing and accessing sensor data over

© 101036563 COMPAIR Project Partners 43

the web, allowing developers and organisations to build applications and systems that

leverage real-time sensing capabilities.

The OGC SensorThings standard aims to simplify the discovery, integration, and consumption

of real-time sensor data from diverse sources. It provides a common framework that enables

developers to build applications that leverage sensor data for a wide range of applications,

such as environmental monitoring, smart cities, agriculture, and industrial monitoring.

By adhering to the SensorThings standard, organisations can ensure interoperability and

compatibility between different sensor networks, platforms, and applications. This facilitates

the integration and aggregation of sensor data from multiple sources, enabling comprehensive

analysis, decision-making, and insights based on real-time information.

In addition, the fact that all the components of the Data Platform are dockerized, guarantees

that two or more components can coexist in the same common environment, sharing the

resources of the host server, without issues, since the docker images run in isolation and any

dependency of one component, cannot affect another component.

Finally, the code base of the DEVA is implemented in a way that multiple platforms are

supported. For Augmented reality applications, Android and iOS are the two operating

systems and thanks to the Unity3D AR Foundation classes, a single code base can serve both

operating systems. As long as this library is used, the required methods behave identical on

both platforms. The only requirement regarding software from DEVA is that the device running

the app has to be AR compatible.

Usability

In this section, we report the results for accessibility from the PageSpeed Insights for the

dashboards of the project. As mentioned previously in the document, the accessibility rules

are defined by the WCAG 2.1 guidelines. The thresholds are 0-49 Poor, 50-89 Moderate and

90-100 Good. Overall, the Dashboards have a good degree of accessibility compliance with

some room of improvement.

Table 10: PageSpeed Usability measurements

Dashboard Accessibility Score

PMD 81 / 100

Moderate

CO2 69/100

Moderate

Monitoring 77/100

Moderate

© 101036563 COMPAIR Project Partners 44

Considering that the Open Group testing planned by the pilots, where this prototype will be

tested by a larger number of users, has not started at the time of writing this document, it is

not possible to provide useful insights regarding the user satisfaction based on questionnaires

or the user behaviour based on Matomo. This information will be provided in the second

version of this document in M30.

Security

In this section, we report the results based on the security of the components and dashboards

of the project as these are derived from SonarQube as part of the static analysis of the code

and SecurityHeaders and OWASP ZAP for the overall security.

The following table provides the results for the components and Dashboards of the project

from the analysis performed by SonarQube in regards to security. More precisely we report

the number of vulnerabilities and rating at the time of writing the document. The aim is to

achieve the highest rating (A) for all the components under investigation by the end of the

project. Currently this goal is partially achieved.

Table 11:SonarQube security measurements

Component Number of

Vulnerabilities

Rating

 Data Manager 2 D

User Manager 0 A

Deva Manager 0 A

PMD 0 A

CO2 Dashboard 1 D

Monitoring Dashboard 1 D

Air Quality Calibrator 0 A

The following table presents the results of the scan performed by the SecurityHeaders tool to

the Dashboards of the project indicating a score based on the existence of specific security

headers at the time of writing this document.

Table 12:Security Headers scores

Dashboard Security Headers score

PMD A

CO2 F

Monitoring A

© 101036563 COMPAIR Project Partners 45

At the time of writing the document the project’s Dashboards were also tested by the

OWASP Zap tool. The tool uses a “spider app” in order to identify all the links of the

dashboards and performs an automated attack looking for specific weaknesses.

Figure 15:PMD Dashboard ZAP results

Figure 16:CO2 Dashboard ZAP results

© 101036563 COMPAIR Project Partners 46

Figure 17:Monitoring Dashboard ZAP results

The following table summarises these results. The scan groups the threats into four main

categories, High, Medium, Low and Informative. The overall risk of a threat falls into these

categories based on a likelihood estimation, that is, how likely is that a related attack appears

and the impact estimation, that is, the damage this attack may do to the system. This is done

by figuring out whether the likelihood is low, medium, or high and then do the same for impact

[21]. The 0 to 9 scale is split into three parts as depicted in the following image:

Figure 18:Likelihood and Impact levels

The Informative alerts essentially do not pose a threat but do provide some information about

the server or the application that potentially can use.

Based on the results of the ZAP scans, there is not an immediate threat to the system but

some Medium and Low-level alerts, mostly about the lack of some security headers and more

restrictive rules for the CORS configurations that need to be tackled in the following releases

of the Dashboards.

© 101036563 COMPAIR Project Partners 47

Table 13:Zap security results

Dashboard Zap results

PMD 3 Medium level threats about one security header missing and CORS

misconfiguration and 5 Informative warnings.

CO2 6 Medium level threats about the missing security headers and CORS

misconfiguration, 4 Low level threats about leaking server information and 4

Informative warnings

Monitoring 2 Medium level threats about one security header missing and 4 Informative

warnings.

Overall, based on the tests performed, the security of the tools under investigation is at a quite

high level, however some effort is still required to reach the highest possible level of security.

All tools used in this section, provide recommendations on how the security can be improved,

so following the provided guidelines and solving the relevant issues for every component, we

can achieve an overall rating of A.

Maintainability

This characteristic represents the degree of effectiveness and efficiency with which a product

or system can be modified to improve it, correct it or adapt it to changes in environment, and

in requirements.

The architecture of the project is modular which means that the components of the system are

loosely coupled, thus internal changes in one component will not affect the operations of

another. Changes however in the inputs or outputs of a component, may affect the operations

of the integrated system.

In the following table we present the code analysis results in code maintainability as these

were calculated by SonarQube. Code smells is code that may be confusing and difficult to

maintain, while the debt is the time estimated to fix all the code smells. From the results

obtained, the number of the code smells is low and thus the overall technical debt is really low,

resulting in the highest rating in all projects. The goal is to reach the highest rating for all

components (A) which currently is achieved.

Table 14:SonarQube maintainability measurements

Component Code smells Debt Rating

 Data Manager 31 7h 12 min A

User Manager 13 3h 37 min A

Deva Manager 19 5h 30 min A

PMD Dashboard 124 1d 4h A

CO2 Dashboard 312 3d 1h A

© 101036563 COMPAIR Project Partners 48

Monitoring Dashboard 38 3h 34 min A

Air Quality Calibrator 28 1h 50min A

Reliability

This is the degree to which a system, product or component performs specific functions under

specified conditions for a specified period. In the following table, we present the results of the

code analysis in terms of code reliability as these are derived from SonarQube's static

analysis. Overall, all the components investigated have a small number of bugs and thus they

receive a high rating with most of them getting the highest possible (A). The goal is by the end

of the project all the components to have a rating of A by resolving the underlying bugs

identified.

Table 15:SonarQube reliability measurements

Component Bugs Rating

 Data Manager 0 A

User Manager 0 A

Deva Manager 0 A

PMD Dashboard 0 A

CO2 Dashboard 5 D

Monitoring Dashboard 1 C

Ait Quality Calibrator 0 A

Portability

Portability is the degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other operational or usage

environment to another. All the core components deployed in the Data Platform are dockerized

and pushed into the project’s private repositories. All the supporting tools of these components

are also dockerized and the relevant docker compose files have been prepared in a way that

can easily be configured so that it can be used in other servers.

A backup mechanism for the databases is already in place and through supporting tools can

be restored in another environment easily. Any file needed can also be pulled into a new

environment through the project’s private repositories.

The majority of the components of AQ CaaS Platform utilise Databricks which in turn can be

used with various cloud providers (AWS, Microsoft Azure and Google Cloud Platform). By

supporting multiple cloud providers, Databricks provides flexibility and choice to organisations,

allowing them to leverage their preferred cloud platform while taking advantage of the unified

© 101036563 COMPAIR Project Partners 49

analytics capabilities offered by Databricks. This enables seamless data integration, scalable

data processing, and advanced analytics across different cloud environments.

Overall, the components developed for the project have a high degree of transferability.

© 101036563 COMPAIR Project Partners 50

3. Conclusion

In conclusion, this document provides a comprehensive assessment of the software

components developed for the COMPAIR project, utilising the ISO/IEC 25010:2011 standard

methodology. By following this methodology, the report evaluates the software system's

compliance with the defined quality characteristics, identifies areas of improvement, and offers

a better perspective for enhancing its performance, reliability, security, usability, and other

important aspects.

The findings and recommendations presented in this report serve as valuable insights for the

project stakeholders, enabling them to make informed decisions regarding the software

system's deployment, further development, and overall success. The report plays a crucial

role in ensuring the software system's quality, efficiency, and alignment with the project's

objectives, ultimately contributing to the overall success of the project.

© 101036563 COMPAIR Project Partners 51

4. References

1. https://www.sonarsource.com/products/sonarqube/

2. https://prometheus.io/

3. https://grafana.com/

4. https://www.databricks.com/

5. https://telraam.net/

6. https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html

7. https://pagespeed.web.dev/

8. https://jmeter.apache.org/

9. https://junit.org/junit5/

10. https://site.mockito.org/

11. https://www.zaproxy.org/

12. https://securityheaders.com/

13. https://www.w3.org/TR/WCAG21/

14. https://wearecolorblind.com/resources/colorblindly-colorblindness-simulator/

15. https://matomo.org/

16. https://github.com/GoogleChrome/lighthouse

17. https://www.npmjs.com/package/@datapunt/matomo-tracker-react

18. https://github.com/lumpn/unity-matomo

19. https://uxplanet.org/how-page-speed-affects-web-user-experience-83b6d6b1d7d7

20. https://www.ogc.org/standard/sensorthings/

21. https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

https://www.sonarsource.com/products/sonarqube/
https://prometheus.io/
https://grafana.com/
https://www.databricks.com/
https://telraam.net/
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://pagespeed.web.dev/
https://jmeter.apache.org/
https://site.mockito.org/
https://www.zaproxy.org/
https://securityheaders.com/
https://www.w3.org/TR/WCAG21/
https://wearecolorblind.com/resources/colorblindly-colorblindness-simulator/
https://matomo.org/
https://github.com/GoogleChrome/lighthouse
https://www.npmjs.com/package/@datapunt/matomo-tracker-react
https://github.com/lumpn/unity-matomo
https://uxplanet.org/how-page-speed-affects-web-user-experience-83b6d6b1d7d7
https://www.ogc.org/standard/sensorthings/
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

