

This project has received financial support from the European Union's Horizon 2020 Programme under
grant agreement no. 101036563

DELIVERABLE

D4.1 Solution Architecture Report

Project Acronym: COMPAIR

Project title: Community Observation Measurement & Participation in AIR
Science

Grant Agreement No. 101036563

Website: www.wecompair.eu

Version: 1.0

Date: 31.10.2022

Responsible Partner: ATC

Contributing Partners: DV, HHI, IMEC, SODAQ, TELR, UAEG

Reviewers: All technical partners
Andrew Stott, Karel Jedlicka

Dissemination Level: Public

Confidential, only for members of the consortium (including
the Commission Services)

X

© 101036563 COMPAIR Project Partners 2

Revision History

Version Date Author Organisation Description

0.1 28.06.2022
Marina Klitsi,

Athanasios Dalianis
ATC Draft ToC

0.2 07.10.2022 Athanasios Dalianis ATC Initial version

0.3 12.10.2022

Sylvain Renault, Oliver

Schreer,

Burcu Celikkol,

Kris Vanherle,

Christos Karelis

HHI,

IMEC,

TELRAAM,

UAEG

Input on Section 3

0.4 14.10.2022 Athanasios Dalianis ATC
Updates in

Sections 2,3,4

0.5 19.10.2022
Gert Vervaet,

Karel Jedlicka

DV,

P4A

First internal

review

0.6 20.10.2022
Athanasios Dalianis,

Marina Klitsi
ATC

Version ready for

internal review

0.7
20.10.2022 -

26.10.2022

Andrew Stott, Karel

Jedlicka,

All technical partners

Gert Vervaet

External

experts

IMEC, TELR,

SODA

DV

Internal review

0.8 27.10.2022 Athanasios Dalianis ATC

Final edits based

on reviewers

comments and

suggestions

1.0 31.10.2022 Athanasios Dalianis ATC Final version

© 101036563 COMPAIR Project Partners 3

Table of Contents

Executive Summary 6

1. Introduction 7

Purpose and Scope 7

Structure of the document 7

2. COMPAIR Technical Specifications 8

2.1 Agile Epics 8

2.2 Non-functional requirements 11

3. COMPAIR Architecture 12

3.1 High level architecture 12

3.2 Components Description 14

3.2.1 AQ Sensor Platform 14

3.2.2 Traffic Sensor Platform 14

3.2.3 AQ CaaS Platform 15

3.2.4 Data Platform 15

API Gateway 16

Identity Manager 17

User Manager 17

Data Management 17

Gamification Manager 18

Dashboards 18

4. Components Interaction 19

5. Integration process 25

5.1 Deployment 25

5.1.1 Hardware and software Requirements 25

5.1.2 Deployment Tools 27

5.2 Agile Methodology 27

5.2.1 Task management 29

5.3 API Guidelines 31

5.4 Integration Tools 31

5.4.1 CI/CD 31

5.4.2 Testing and code quality 32

5.4.3 Monitoring 33

6. System validation 34

© 101036563 COMPAIR Project Partners 4

6.1 ISO/IEC 25010:2011 34

6.1.1 Quality in use model 34

6.1.2 Product quality model 35

6.2 Designing a quality model 36

6.2.1 Understanding the product quality model 36

6.2.2 Functional suitability 36

6.2.3 Performance efficiency 36

6.2.4 Compatibility 36

6.2.5 Usability 37

6.2.6 Security 37

6.2.7 Maintainability 38

6.2.8 Reliability 38

6.2.9 Portability 38

7. Implementation Plan 40

8. Conclusion 41

9. References 42

List of Tables

Table 1: COMPAIR personas .. 8

Table 2: List of epics ... 8

Table 3: List of non-functional Requirements .. 11

Table 4: List of hardware and software requirements .. 25

Table 5: List of integration tools .. 31

List of Figures
Figure 1: The COMPAIR architecture .. 13

Figure 2: Air Quality Sensor Platform .. 14

Figure 3: Traffic Sensor Platform... 14

Figure 4: Air Quality Calibration as a Service Platform .. 15

Figure 5: Data platform ... 16

Figure 6: Air Quality sensor data collection and processing .. 20

Figure 7: Traffic data collection and processing .. 21

Figure 8: Historical data in PMD .. 22

Figure 9: Sensor data in the DEVA ... 23

Figure 10: CO2 Dashboard - Calculation of CO2 Footprint ... 24

Figure 11:Agile Manifesto ... 28

Figure 12: Agile methodology workflow ... 28

© 101036563 COMPAIR Project Partners 5

Figure 13: Jira roadmap view .. 29

Figure 14: Jira backlog view .. 30

Figure 15: Development process .. 30

Figure 16: CI/CD Process ... 32

Figure 17: The ISO/IEC 25010:2011 system/software quality model characteristics 35

List of Abbreviations

Acronym Description

API Application Programming Interface

AQ Air Quality

AQS Air Quality Sensor

CaaS Calibration as a Service

DEVA Dynamic Exposure Visualisation Application

HTTP(S) Hypertext Transfer Protocol (Secure)

NO2 Nitrogen Dioxide

PM Particulate Matter

PMD Policy Monitoring Dashboard

REST Representational State Transfer

SSO Single Sign On

UI User Interface

© 101036563 COMPAIR Project Partners 6

Executive Summary
COMPAIR is a diverse project with several work packages working in parallel to achieve

common objectives. To start this work with a mutual sense of direction, we needed a high-

level blueprint of the overall technology development within the project. The role of this

document is to provide a first version of the system architecture and act as a common point of

reference throughout the project.

This deliverable is the outcome of the first task in WP4 and it presents the overall architecture

of the COMPAIR platform in terms of the supported functionalities, the respective processes

and the components that realise them. The document presents a coarse-grained collection of

technical components that provide the necessary functionality and defines the principles for

their integration in a manner that ensures completeness, safety, and efficiency. To this end,

we propose a Service-oriented approach, where each functional unit is implemented as a

stand-alone service, communicating in a standardised manner with other components.

The document sets the boundaries for the integration of the COMPAIR modules by presenting

the context and use for the COMPAIR platform. As such, it builds on top of the technical project

requirements and presents the way that the COMPAIR capabilities will be able to integrate

into the operational environments of the pilots which are the early adopters of the proposed

solution.

We consider the architecture to be a live document that will evolve and be aligned with the

ongoing work in the project.

© 101036563 COMPAIR Project Partners 7

1. Introduction

Purpose and Scope

The objective of this document is to present the overall architecture of the COMPAIR platform

in terms of the supported functionalities, the respective processes and the components that

realise them. This document will serve as a reference point for the development work that will

take place in WP3 and WP4.

The decisions presented in this deliverable are subject to refinements and modifications,

based on the progress of the technical work packages, as well as the validation and evaluation

phases of the project.

Structure of the document

This deliverable is organised as follows:

- Section 2 presents an overview of the technical specifications in terms of functional

and non-functional requirements of the system.

- Section 3 provides the description of the high-level architecture of the COMPAIR

platform as well as a description of the components comprising it.

- Section 4 presents the main workflows and component interactions.

- Section 5 describes the integration process, including information about the

deployment of the components, the methodology, as well as the integration tools that

will be used in the context of the project.

- Section 6 provides an overview of the methodology that will be used for the system

validation of the platform.

- Section 7 presents the implementation plan of the system components.

- Section 8 concludes this deliverable

© 101036563 COMPAIR Project Partners 8

2. COMPAIR Technical Specifications
This section presents the initial set of system requirements, based on the user requirements

identified in D2.4 Pilot Operations Plan in the form of agile epics. As the COMPAIR system

design and implementation goes on, all these requirements will be further refined and specified

in more detail.

2.1 Agile Epics

The epics refer to different personas that are the target for the user stories. They are depicted

in the table. The personas are roles that can be taken up by people depending on their intent

and context.

Table 1: COMPAIR personas

Persona Description

Citizen A member of the general public that uses the tools

Admin

Technical person that can assign people roles, do some maintenance activities

around keeping systems running, checking log files, etcetc

Researcher

Expert of air quality and/or traffic. Will analyse data coming from the project,

design and follow up experiments.

The next table presents in summary the list of agile epics defined in D2.4 as a reminder to the

reader.

Table 2: List of epics

ID EPICS

AllNf01

As a citizen, I want to use fast and efficient dashboards, so I can analyse situations

well

AllExp

As a citizen, I want to be able to export the data from the dashboards in a number

of formats, so I can share and work on the data outside the COMPAIR tools

AllL&f

As a citizen, I want to use pleasing, clear, consistent dashboards, so I can analyse

situations well

© 101036563 COMPAIR Project Partners 9

ID EPICS

Co2Cal

As a citizen, I want to know the current and historic contribution of my different

activities to my Carbon Footprint, so I can maximise the impact of changes to my

behaviour

Co2RRe

As a citizen, I want to get a list of recommendations on how to reduce my

contribution to CO2 creation

Co2Man

As an admin, I want to manage the dashboards I am responsible for, so I can help

my users be efficient

Co2Sce

As a citizen, I want to be able to create scenarios of citizen and government

actions that show me how emissions can be reduced to a certain target.

DyDAoR

As a citizen, I want to see the output of air quality sensors that were worn on trips,

so I can analyse the exposure of people to air pollution

AllDis

As a citizen, I can access information about air quality, best practices, ... from the

COMPAIR tools and dashboards

DyDMan As a researcher, I want to be able to manage experiments done

DisSha

As a researcher, I want to be able to share information, so my users know how to

use COMPAIR tools efficiently

DEVAAnn As a citizen, I can annotate and share information about exposure on my trips

DEVAHis

As a citizen, I want to get historical information about trips so I can assess the

exposure

DEVARea

As a citizen, I want to get realtime information about trips so I can assess the

exposure

DEVAUI

As a citizen, I want to use pleasing, clear, consistent dynamic exposure

visualisation app, so I can analyse situations well

DEVAGam

As a citizen, I want to interact with the app and simulate how my actions would

lead to reduced/increased pollution

© 101036563 COMPAIR Project Partners 10

ID EPICS

DEVAMan

As a researcher, I can monitor how the app is being used so I can assess if actions

need to be taken

DEVAUsI

As a citizen, I can update my settings in the app, so my characteristics, my

sensor,.. is taken into account

DEVAViz As a citizen, I want an intuitive and clear visualisation of the data

AllUMa As a citizen, I can login to the tools, so my settings and personal info is used

PMDCom

As a citizen, I want to compare the output from different projects using the policy

monitoring dashboard against each other

PMDAir

As a citizen, I want to see realtime and historical information about air pollution, so

I can assess the impact of policy decisions

PMDCon

As a citizen, I want to see context data like weather, roadworks, so I can take this

context into account when assessing the impact of policy decisions

PMDMap

As a citizen, I can use a map interface to see the location of sensors so I have an

understanding where measurements are done

PMDTra

As a citizen, I want to see realtime and historical information about traffic, So I can

assess the impact of policy decisions

PMDGam

As an admin, I can trigger behaviour using the dashboard by using gamification

techniques, so I can increase take up of the dashboard

PMDMan

As an admin, I can manage dashboards during the lifecycle of projects so people

can use the dashboards to assess impact of policy decisions

PMDUI

As a citizen, I get a user friendly, pleasing, intuitive UI, so I know how to use the

dashboard and I'm motivated to use it

© 101036563 COMPAIR Project Partners 11

2.2 Non-functional requirements

This section defines the non-functional requirements that should apply for the COMPAIR

platform components. The COMPAIR platform should satisfy a set of non-functional

requirements, which will ensure the normal operation of the system and the provision of a

proper environment for the desired system functionalities. The non-functional requirements

are depicted in the following table. In this table, we provide a unique code ID for every

requirement, a name for the requirement and its description.

Table 3: List of non-functional Requirements

ID Requirement Description

NF1 Performance

The COMPAIR system should respond in a timely manner using

the predefined resources when an increase in users/datasets

occurs. The exact response time depends on the action and more

specifically on its criticality, e.g. a user interface should display an

alert in 0.5 seconds, while a backup process can be done in two

hours without issues.

NF2 Security

The COMPAIR system should be secured against sabotages

arising from all types of attacks. Security techniques that

discourage data loss and misuse of data for fraudulent acts

should be utilised.

NF3 Privacy

The COMPAIR system should be GDPR compliant and employ

the necessary mechanisms to ensure this e.g. sensitive personal

data and user created content will never be published without

user consent.

NF4
Scalability/Expandabi

lity

The system should be able to handle the increasing size of

datasets, as well as a potentially increased number of users.

NF5 Usability

The COMPAIR system should have an attractive and intuitive

User Interface. The interface needs to address various user

groups and therefore should be easy to use and give access to

all system functionalities providing easy navigation through all

features.

NF6 Interoperability
The COMPAIR system should use communication protocols that

allow its use by different systems and devices.

NF7 Multilinguality

The COMPAIR system should support multiple languages, at

least English and the pilot languages for the relevant

components.

© 101036563 COMPAIR Project Partners 12

3. COMPAIR Architecture
This section presents the initial blueprint of the COMPAIR platform architecture. A high-level

architecture of the platform is described to set the stage for the development of the COMPAIR

prototypes. It must be noted that the decisions presented in this section are subject to

refinements and modifications, based on the progress of the technical work packages, as well

as the validation and evaluation phases of the project.

3.1 High level architecture

In this section we provide a high-level overview of the platform architecture.

To tackle the non-functional requirements and technical specifications described in the

previous sections, a distributed microservices based approach is proposed, where the

COMPAIR components communicate with the help of a set of APIs.

The following diagram depicts the main components of the system and how these are

distributed between the different servers of the system.

The COMPAIR solution architecture (Figure 1) relies on a distributed pattern, where the

different components of the system are deployed to individual server nodes, each dedicated

to specific tasks. In the COMPAIR project we have four server nodes, as presented in the

figure below:

1) the Traffic and Air Quality Sensor platform nodes which provide traffic and air

quality data based on their sensor readings,depicted with the dark yellow and light

orange boxes,

2) the Air Quality Calibration as a Service platform node (AQ CaaS), that integrates

and calibrates air quality data from SODAQ, external sensors and data from reference

stations, depicted with the dark orange box,

3) and the Data platform node, depicted with the big green box, which hosts the

necessary mechanisms for data collection and transformation, user management and

visualisation (light green boxes).

© 101036563 COMPAIR Project Partners 13

Figure 1: The COMPAIR architecture

© 101036563 COMPAIR Project Partners 14

3.2 Components Description

This section analyses the components comprising the COMPAIR platform. These components

are presented below grouped, based on the node they will be installed.

3.2.1 AQ Sensor Platform

Figure 2: Air Quality Sensor Platform

The AQ Sensor Platform is responsible for gathering the air quality data provided by the static

and mobile SODAQ sensors. Its main component is the AQS Manager which collects the data

and stores them in a database, exposes an API providing air quality data and sensor metadata

and also pushes the data to the Air Quality CaaS Platform through a REST API in real time.

A copy of the data is kept and anonymised, with the sensors data shown on the knowyourair.net

map.

3.2.2 Traffic Sensor Platform

Figure 3: Traffic Sensor Platform

http://knowyourair.net/

© 101036563 COMPAIR Project Partners 15

The Traffic Sensor Platform is responsible for gathering the traffic data from the static sensors

provided by Telraam. Its main component is the Traffic Manager that is responsible for the

data ingestion and processing, the data annotation and the detection of potential data

anomalies. The data is stored in a database and is sent to the Data Receiver at the main node.

The Traffic data API is available as a stand-alone application as well, accessible via

www.telraam-api.net. Any Telraam data used in the COMPAIR project is ingested by the

COMPAIR data management components and used in the COMPAIR dashboards.

3.2.3 AQ CaaS Platform

Figure 4: Air Quality Calibration as a Service Platform

The AQ CaaS Platform is responsible for ingesting and processing air quality data provided

by the SODAQ sensors and other sources like reference stations. The data from SODAQ is

sent to the AQ CaaS platform through a REST API provided by the Air Quality Calibrator which

maps the data into a standardised format that complies with the Open Geospatial Consortium

SensorThings API format adds it to the ingestion pipeline, processes, cleans and calibrates

and finally stores it in a time series database. Then at frequent times it sends the data to the

Data Receiver at the main COMPAIR node.

3.2.4 Data Platform

The Data platform is the main node of the COMPAIR system and hosts the necessary

components for data integration and harmonisation, user management, gamification and

monitoring services, as well as data visualisation. It gathers the data from the previously

described platforms, harmonises the data to a common format and feeds it to the mobile

application and the web dashboards of the system.

http://www.telraam-api.net/

© 101036563 COMPAIR Project Partners 16

Figure 5: Data platform

It’s main components are in summary:

API Gateway

In microservices architectures, where many services are deployed in several virtual or physical

nodes and multiple instances of the same service can exist, an API Gateway is a necessity.

An API Gateway is a component that intervenes between a web client and the backend APIs,

acting as a reverse proxy that forwards the request to the appropriate microservice, usually

after proper authorization.

© 101036563 COMPAIR Project Partners 17

The API Gateway thus provides a single point of access to UIs and in general external

applications, decreases the complexity of implementation and allows security measures, and

functionalities such as load balancing and service discovery to be applied more easily.

For the purposes of the project we are going to use Traefik [1].

Identity Manager

The Identity Manager is responsible to store the user account data and to provide

authentication and authorization services to the platform. The realisation of the Identity

Manager will be based on Keycloak.

Keycloak [2] is an open-source identity and access manager for application and services, that

provides several features for the project like centralised management, standard protocols like

OAuth 2.0, SAML 2.0 etc, social login, single sign on (SSO) etc, giving us a variety of options

to tackle the project needs in this area.

User Manager

The role of the User Manager can be summarized as follows:

- It provides authentication and authorization mechanisms based on Json Web Tokens

- It allows for user registration and user profile edit

- It allows for role definition and user assignment

- It allows for permissions definition and user groups / users assignment

The User Manager provides both APIs and a UI for managing the related entities and utilises

the Identity Manager providing this way an abstraction layer in front of it.

Data Management

The Data Management components is of a set of components responsible of the following:

- The Data Receiver exposes an API in order for the other platforms to push their data

to. The data is transformed to the Sensorthings OGC standard [3] when needed, e.g.

the air quality data already arrives in this structure while the Telraam data is converted

into it.

- Transfer real time information to the Augmented Reality app DEVA and the

dashboards through web sockets (Web Sockets Manager component).

- Collect carbon consumption related data from the users, evaluate their footprint and

suggest ways to reduce it, as well as collect user generated scenarios for participation

in policy making (Carbon Footprint Manager component)

- Tackle the needs of the users in terms of the aggregated data (Data Manager

component). The Data Manager exposes a set of APIs that is consumed by the

dashboards and the DEVA app.

© 101036563 COMPAIR Project Partners 18

Gamification Manager

Gamification is the application of techniques found in games to a non game context. The

gamification techniques take advantage of the intrinsic and extrinsic human motivations in

order to increase the user’s participation in certain aspects of a software application.

The COMPAIR Gamification Manager will monitor the user actions in the COMPAIR mobile

application and the events produced in the system, and implement the necessary game

mechanics that will increase the user’s satisfaction with the system and engage him/her more

on its functionalities.

The exact usage of this component will be further investigated during the course of the project

and the evolving epics and user stories.

Dashboards

The COMPAIR system will offer a set of dashboards in order to tackle the user and technical

requirements of the project.

These in summary include:

- The Policy Monitoring Dashboard (PMD) which helps users to understand and

compare how environmental situations change under different actions.

- The Carbon Footprint Simulation Dashboard (CO2) which is designed to support

specific experiments around carbon footprints or indoor footprint for any chosen air

molecule.

- The Citizen Science Dynamic Exposure Visualisation Dashboard which will be

used to show both city and CS data (with a GIS identifier) on a map and in various

charts.

- The Digital Twin Dashboard where generated ideas for new policies will be able to

be simulated and reviewed in a systematic manner against other policies.

- The Admin UI through which a system administrator can handle and monitor

resources of the system e.g. users

More information about the COMPAIR dashboards can be found at D3.4 Dashboards

Design.

3.2.5 Dynamic Exposure Visualisation application (DEVA)

The COMPAIR system will also offer an Augmented Reality app, the so-called Dynamic

Exposure Visualisation App (DEVA). The aim is to enable people to explore their surroundings

via their smartphone or tablet camera, so they see a visual overlay of environmental

information such as air quality or traffic information. Hence, the DEVA app will be the link

between citizen science environmental sensors provided by the project, public environmental

data, CS experiments and the users.

More information about the COMPAIR Augmented Reality app can be found at D3.3 AR

design.

© 101036563 COMPAIR Project Partners 19

4. Components Interaction
In this section, the architecture is described through block/sequence diagrams stressing the

interactions between the different components that compose the COMPAIR solution in the

main workflows of the system. The workflows below are indicative and may change during the

course of the project as the implementation and integration of the components progresses.

Air Quality sensor data collection and processing

This workflow describes the process of gathering the air quality sensor data, its processing

and transfer to the components of the main platform and the AR application.

- Initially the AQS Manager receives and stores the sensor data locally in real time.

- At frequent times, it sends the data to the Air Quality Calibrator through a REST API

provided by the AQ Manager.

- The AQ Calibrator processes and calibrates the data, stores them in the AQ database

and sends them to the Data Receiver in the main node by making a POST request to

the Receiver’s API.

- The Data Receiver saves the new data, notifies the Web Sockets Manager and

updates the statistics about the sensor data used for historical information, for

optimisation purposes.

- The Web Sockets Manager forwards the new sensor data to the Dashboards and

DEVA through dedicated web sockets topics.

© 101036563 COMPAIR Project Partners 20

Figure 6: Air Quality sensor data collection and processing

Traffic sensor data collection and processing

This workflow describes the process of gathering the traffic sensor data, its processing and

transfer to the components of the main platform and the AR application. The process is similar

to the one described for the air quality data, indicating that there is a common approach for

both types of sensor data. The same approach will need to be followed from future data

providers in order to connect to the main platform.

- Initially the Telraam Manager receives, processes and stores the sensor data locally

in real time.

- At frequent times, it sends the data to the Data Receiver through a REST API provided

by the Receiver.

© 101036563 COMPAIR Project Partners 21

- The Data Receiver, transforms the new data based on the OGC standard, saves it to

the database, notifies the Web Sockets Manager and updates the statistics about the

sensor data used for historical information, for optimisation purposes.

- The Web Sockets Manager forwards the new sensor data to the Dashboards and AR

application through dedicated web sockets topics.

Figure 7: Traffic data collection and processing

Historical data in the Policy Monitoring Dashboard

The PMD will provide to the user the option to search for historical data for a specific sensor

or group of sensors. In the following sequence diagram we present the communication

between the relevant components in order for this functionality to be realised.

- Initially the user select the type of sensor e.g. PM2.5, PM10, NO2 etc. the time span,

e.g. the last hour, day, week etc, the cell representing a group of sensors based on

location and finally a sensor from this group

© 101036563 COMPAIR Project Partners 22

- The PMD asks the Data Manager for the statistics through a REST API call.

- The Data Manager retrieves this information from the database and returns it to the

PMD

- The PMD presents to the user a chart depicting the evolution of the sensor values for

the selected time period.

Figure 8: Historical data in PMD

Sensor data in the DEVA

The Data Manager will provide sensor related data to the DEV application in a similar way as

the PMD. The following diagram depicts the communication between the relevant components

in order for this functionality to be realised.

- As the user moves in the city, views information related to the pollutants. At any point,

he /she can request for more information about sensors around him / her by clicking

on the relevant icon.

- The DEVA requests the sensor data from the Data Manager through an API call.

- The Data Manager gets the latest values and metadata from the database and sends

them back to DEVA.

- DEVA visualises the data and presents it to the user.

© 101036563 COMPAIR Project Partners 23

Figure 9: Sensor data in the DEVA

CO2 Dashboard - Calculation of CO2 Footprint

In the following diagram we present the communication between the components of the

system in order to allow the user to calculate his / her CO2 footprint.

- Initially the user logs in to the platform through the Container UI, the UI that includes

the CO2 Dashboard among other UIs. The user provides his / her credentials and the

Container UI sends the credentials to the User Manager.

- The User Manager checks the credentials with Identity Manager (Keycloak) and after

successful confirmation it sends the user token to the UI.

- The user navigates to the CO2 Dashboard main page and selects to calculate the CO2

footprint.

- The user fills in information such as demographic data, information about his car,

building and travels etc.

- The data is sent to the Carbon Footprint Manager, which calculates the user’s footprint

and generates recommendations for improving it.

- The calculation and recommendations are sent to the user.

© 101036563 COMPAIR Project Partners 24

Figure 10: CO2 Dashboard - Calculation of CO2 Footprint

© 101036563 COMPAIR Project Partners 25

5. Integration process
For the integration purposes of the COMPAIR project we are following the Agile Software

Development Practices with frequent integration cycles, rapid prototyping, and close

collaboration between self-organising, cross-functional teams. Based on agile principles, we

intend to apply Continuous Integration techniques for performing automated building, testing

and deployment of the provided components. For these purposes we have set up a

development environment containing a set of continuous integration and deployment tools for

the components of the main platform.

5.1 Deployment

As mentioned in Section 3, in the context of the project, several servers will be employed,

each with a specific role in the whole system. Essentially these servers constitute a fog

architecture, since some nodes act as “fog” nodes where the collection of the raw data and a

first level of its processing takes place, while the main node (data platform) acts as the “cloud”

one where the aggregated data are collected, stored and presented to the user in a common

integrated environment.

Since the architecture is service oriented, the communication of the fog nodes with the cloud

one will be done through the component APIs, using the HTTPS protocol. In every

communication an authentication token will be used in order to increase further the level of

security

In the following subsections we provide an initial list of hardware and software requirements

of the components, as well as the deployment tools that will be used.

5.1.1 Hardware and software Requirements

The following table summarises an initial estimation of the requirements the components have

in terms of hardware, as well as their software dependencies, as these were derived from the

discussions with the technical team of the project.

Table 4: List of hardware and software requirements

Component RAM CPU Disk Space Software
Dependencies

Air Quality Sensor Platform

AQS Manager AWS Fargate, RDS (PostgreSQL)

Traffic Sensor Platform

© 101036563 COMPAIR Project Partners 26

Component RAM CPU Disk Space Software
Dependencies

Traffic Manager AWS Lambda functions, Python, PostgreSQL

Air Quality CaaS Platform

Air Quality

Calibrator 16GB 8 cores 300GB

Azure, .net,

TimeSeriesDB

Data Platform

Identity Manager

(KeyCloak) 2GB 2 cores 2GB PostgreSQL, Docker

User Manager 2GB 2 cores 1GB

Spring Boot, Keycloak,

Docker

Data Manager 4GB 4 cores 40 GB

Spring Boot, MongoDB,

Docker

Gamification

Manager 4GB 2 cores 2GB

Spring Boot, MongoDB,

Docker

API Gateway

(Traefik) 2GB 2 cores 200MB Docker

Monitoring

services like

Prometheus,

Grafana,

SonarQube 8 GB 4 cores 30GB PostgreSQL, Docker

Augmented Reality Application

DEVA Augmented

Reality app for

mobile phones

and tablets with

Android 4GB 4 cores 300MB

ARCore from Android,

Android OS up to version

8 ‘oreo’. Recommended

Android 10 or higher.

© 101036563 COMPAIR Project Partners 27

Component RAM CPU Disk Space Software
Dependencies

AR compatible models only. More info at:

https://developers.google.com/ar/devices

DEVA Augmented

Reality app for

mobile phones

and tablets with

iOS 4GB 4 cores 300MB

ARKit from Apple,

requires iOS 11.0 or later

and an iOS device with an

A9 or later processor.

AR compatible models only. More info at:

https://developer.apple.com/documentation/arkit/verifying_device_supp

ort_and_user_permission

5.1.2 Deployment Tools

For component isolation and easy deployment, we are going to use Docker [4] whenever

possible, that is, the components developed for the main COMPAIR platform will have to be

dockerized mandatorily while the components deployed in the other nodes of the system

optionally.

Docker packages and runs applications in Docker images. A Docker image is a lightweight,

standalone, executable package of software that includes everything needed to run an

application: code, runtime, system tools, system libraries and settings. Docker images are

stored in a Docker registry and in order to run them in virtual or physical machines, the

machines need to have installed the Docker Engine software. The running instance of a

Docker image is called a Docker container. A container is a standard unit of software that

packages up code and all its dependencies, so the application runs quickly and reliably from

one computing environment to another.

For orchestrating and monitoring the Docker containers of the projects we will use Docker

compose [5]. Compose is a tool for defining and running multi-container Docker applications.

With Compose, we use a YAML file to configure the application’s services. Then, with a single

command, we create and start all the services defined in the configuration.

5.2 Agile Methodology

A research among the most dominant development methodologies [6] indicates that the most

appropriate way of implementing integration mechanisms for the COMPAIR platform would

be ‘Rapid Application Development’. This implies that a system prototype is implemented,

tested, and evaluated in an iterative manner, using short cycles to add functionality to the

prototype. This is more suitable for an Innovation action project aiming to deliver a system

https://developers.google.com/ar/devices
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission
https://developer.apple.com/documentation/arkit/verifying_device_support_and_user_permission

© 101036563 COMPAIR Project Partners 28

prototype, since it enables end users to continuously participate in the development of the

integration mechanisms and guide the development towards their needs.

In this manner, the processes of implementation and definition of the integration mechanisms

will proceed in parallel until the end of the project by means of close collaboration between all

the teams. One of the most popular types of Rapid Application Development is the ‘Agile

Methodology’, which is associated with a list of terms and rules that must be followed during

development as described in the ‘Agile Manifesto’ [7].

Figure 11:Agile Manifesto

Agile methodology implies and enforces collaboration between self-organising, cross-

functional teams. It promotes adaptive planning, evolutionary development and delivery, a

time-boxed iterative approach, and encourages rapid and flexible response to change.

The methodology workflow could be reflected in the following diagram:

Figure 12: Agile methodology workflow

© 101036563 COMPAIR Project Partners 29

5.2.1 Task management
In order to coordinate the technical efforts between the technical partners and break down the

user requirements into technical tasks, in compliance to the agile principles, we have set up a

COMPAIR space on Jira Cloud [8].

Jira is a tool that provides an easy way to create epics, user stories and tasks, to plan agile

sprints and assign work to the agile teams, and also to keep track of the progress done.

For the purposes of the COMPAIR project:

- Epics, user stories and tasks are being set (for the Alpha version this is completed

already). These are being refined frequently based on the users’ feedback.

- One Product Owner per component has been assigned.

- Monthly sprint planning sessions take place, where each sprint contains the prioritised

tasks that can be implemented in the given time, after discussion with all the technical

teams.

- Monthly sprint reviews take place where the results of each sprint are presented to the

pilots

- Bi-weekly technical sessions take place, where the progress of the tasks is being

reported and technical matters are discussed.

Figure 13: Jira roadmap view

© 101036563 COMPAIR Project Partners 30

Figure 14: Jira backlog view

Figure 15: Development process

© 101036563 COMPAIR Project Partners 31

5.3 API Guidelines

Some of the components developed in COMPAIR will have APIs exposed. It is important that

these APIs follow best practices for better understanding and communication. The minimum

API guidelines that need to be followed are summarised in the following list:

- All APIs will use the JSON / REST protocol, over HTTP for internal APIs or HTTPS for

publicly available ones  

- APIs must return the appropriate HTTP status codes based on status code definitions

[9]

- APIs must use the correct service methods [10] for their operations

- APIs must be cacheable when possible

- APIs must support versioning 

- APIs must support security measures such as authorization headers

- APIs must support pagination

- APIs must be documented using OpenAPI

5.4 Integration Tools

In this section we present the tools that can be used for the integration of the components of

the COMPAIR system. An overview of these tools is presented in the table below.

Table 5: List of integration tools

Category Tool

Task management Jira

Component packaging Docker

Component orchestration Docker compose

Component images repository Canister

Code repository GitLab

Component deployment Jenkins pipelines

Code Testing  JUnit, Mockito, Mocka, Jest, Nose

Monitoring Prometheus, Grafana

Code Quality  SonarQube

5.4.1 CI/CD

For the purposes of Continuous Integration and Deployment regarding the components of the

main node, we are using the GitLab pipelines feature. Pipelines are the top-level component

of continuous integration, delivery, and deployment and are composed of Jobs that define

what needs to be done and Stages that define when the jobs must run.

© 101036563 COMPAIR Project Partners 32

The Jobs of each Stage can be executed in parallel while the Stages can only be completed

sequentially. If all the Jobs of a Stage complete successfully, then the pipeline proceeds to

the next Stage. If a Job fails, then the whole pipeline fails.

The pipelines are defined in specific files (GitLab-ci.yml), that are stored in the root folder of

the code repository and involve the creation of integration parameters on the administration

pages of GitLab. 

The COMPAIR code projects will have to run the pipeline depicted in Figure 16  and has the

following Stages:

1. Build the code. This can be considered for example the equivalent of mvn build or

npm build in Java and Node JS respectively

2. Run the unit and integration tests defined in the code project. If one of the tests

fails, the pipeline fails

3. Produce the quality metrics and push them to the project’s SonarQube for further

evaluation

4. Create the Docker image of the component and push it to the relevant Docker

image registry

5. Deploy the component to the project’s servers and run docker-compose

Figure 16: CI/CD Process

5.4.2 Testing and code quality

The system validation methodology is described in more detail in Section 6 System validation

of the current document. In the current subsection we present some of the tools that can be

used to retrieve the measurements that will be defined based on the methodology metrics.

All components developed for COMPAIR, will include unit and/or integration tests, to promote

a higher level of code quality.

Unit tests are automated tests that check if a small part of the application, known as unit,

behaves as it is intended to. In unit testing, any dependencies the unit has are replaced by

“mock” units, that is, units that just return a defined response without implementing any actual

functionality.

Integration tests check the behaviour of not only one unit, but a group of units that work

together for the completion of a specific functionality. All the dependencies, in this case,

including external ones like databases, are real and the tests are performed with test or even

real data.

© 101036563 COMPAIR Project Partners 33

Various tools exist for implementing unit and integration tests, in all popular programming

languages like:

- Junit [11], Mockito [12] for Java

- Karma [13], Mocha [14], Chai [15] for Node JS

- Unittest [16], nose [17] for Python

- Jest [18], Mocha for React JS etc.

Besides the unit and integration tests, the COMPAIR APIs will undergo stress tests to measure

their performance under load. A tool that can be used for this purpose is JMeter.

JMeter [19] is designed to load test functional behaviour and measure performance of web

applications and web services by defining a set of Web Services Test Plan, which include

information like the parameters of the service, the number of concurrent users, the time frame

etc.

In order to have a more reliable and globally accepted measure of code quality, for the various

quality metrics defined in the validation methodology, the popular SonarQube a quality

gateway will be used.

SonarQube [20] is an open-source platform developed for continuous inspection of code

quality to perform automatic reviews with static analysis of code to detect bugs, code smells,

and security vulnerabilities on more than 20 programming languages. SonarQube offers

reports on duplicated code, coding standards, unit tests, code coverage, code complexity,

comments, bugs, and security vulnerabilities.

5.4.3 Monitoring

In systems like COMPAIR, it is important to ensure that the different system element services

are running smoothly. To this end, the overall performance of the system needs to be

constantly monitored and actions to be taken by a system administrator in case of performance

degradation.

The COMPAIR system should be in general cloud agnostic and since during the project more

performance metrics may be defined, additional monitoring tools should be deployed in the

platform. Some of these tools can be Prometheus [21] and Grafana [22].

Prometheus is an open-source tool under Apache Licence, used for event monitoring and

alerting. It records real time metrics and stores them in a time series database. It features

functionalities like distributed storage, multiple nodes of graphing and dash boarding support

and can collaborate with a wide range of tools like Docker, Kubernetes and Grafana.

Grafana is open source and extendable analytics and interactive visualisation web application

that allows a user to query and visualise data, through a set of charts, graphs and alerts, no

matter where this data is stored.

© 101036563 COMPAIR Project Partners 34

6. System validation
In this section we provide an overview of the methodology that will be used for the system

validation of the platform. More specifically we present the ISO/IEC 25010:2011 [23] and

explain its quality characteristics. Out of these characteristics, we will select the most

appropriate ones, in order to form the most suitable quality model for the COMPAIR project

and perform our validation tests to the final version of the COMPAIR platform.

Software validation is the “confirmation by examination and provision of objective evidence

that software specifications conform to user needs and intended uses, and that the particular

requirements implemented through software can be consistently fulfilled”. Since software is

usually part of a larger system, the validation of software typically includes evidence that all

software requirements have been implemented correctly and completely.

In general, software validation is the process of developing a “level of confidence” that the

system meets all requirements, functionalities, and user expectations as set out during the

design process. It is a critical tool used to assure the quality of its components and the overall

system. It allows for improving/refining the end product.

6.1 ISO/IEC 25010:2011

Recently, the BS ISO/IEC 25010:2011 standard about system and software quality models

has replaced ISO 9126-1. Applying any of the above models is not a straightforward process.

There are no automated means for testing software against each of the characteristics defined

by each model. For each model, the final attributes must be matched against measurable

metrics and thresholds for evaluating the results must be set. It is then possible to measure

the results of the tests performed (either quantitative or qualitative/observed).

The ISO/IEC 25010:2011 standard is the most widespread reference model and includes the

common software quality characteristics that are supported by the other models. This standard

defines two quality models providing a consistent terminology for specifying, measuring and

evaluating system and software product quality, as described below.

6.1.1 Quality in use model

The Quality in use model is composed of five characteristics that relate to the outcome of

interaction with the system and characterises the impact that the product can have on the

stakeholders. It pertains to the notion of external quality, i.e. the quality of a (software) product

as perceived by its users. External quality assesses the characteristics of the product quality

model by black-box measurement.

© 101036563 COMPAIR Project Partners 35

6.1.2 Product quality model

The Product quality model is composed of eight characteristics that relate to static properties

of software and dynamic properties of the computer system. It is intended to measure the

internal quality, i.e., the quality of the software (and, particularly, its internal components) that

eventually delivers external quality. Internal quality assesses the characteristics of the product

quality model by glass-box measurement, i.e. measuring system properties based on

knowledge about the internal structure of the software. For our case, the product quality model

is adopted. The eight quality characteristics, are further divided into sub-characteristics, as

shown in the following figure:

Figure 17: The ISO/IEC 25010:2011 system/software quality model characteristics

Although rather generic, not all the listed quality characteristics might be applicable for our

purpose, so a tailor-made subset could be better suited. For each of the sub-characteristics,

a metric/measurable attribute will be defined, along with thresholds. These metrics and

thresholds are customised for each software product, which in our case is the COMPAIR

platform (consisting of individual components). By evaluating these metrics, we will be able to

assess the overall quality of our platform and the percent to which we were able to meet the

user and technical requirements (reflected to system specifications and functionalities),

defined during the design phase of the project.

© 101036563 COMPAIR Project Partners 36

6.2 Designing a quality model

As we have seen, a quality model is the cornerstone of a product quality evaluation system. It

determines which quality characteristics will be considered when evaluating the properties of

a software product.

6.2.1 Understanding the product quality model

The quality of a system is the degree to which the system satisfies the stated and implied

needs of its various stakeholders, and thus provides value. Those stakeholders' needs are

precisely what is represented in the quality model, which categorizes the product quality into

characteristics and sub-characteristics, as defined below.

6.2.2 Functional suitability

This characteristic represents the degree to which a product or system provides functions that

meet stated and implied needs when used under specified conditions. This characteristic is

composed of the following sub characteristics:

- Functional completeness - Degree to which the set of functions covers all the specified

tasks and user objectives.

- Functional correctness - Degree to which a product or system provides the correct

results with the needed degree of precision.

- Functional appropriateness - Degree to which the functions facilitate the

accomplishment of specified tasks and objectives.

6.2.3 Performance efficiency

This characteristic represents the performance relative to the amount of resources used under

stated conditions. This characteristic is composed of the following sub characteristics:

- Time behaviour - Degree to which the response and processing times and throughput

rates of a product or system, when performing its functions, meet requirements.

- Resource utilisation - Degree to which the amounts and types of resources used by a

product or system, when performing its functions, meet requirements.

- Capacity - Degree to which the maximum limits of a product or system parameter meet

requirements.

6.2.4 Compatibility

This is the degree to which a product, system or component can exchange information with

other products, systems, or components, and/or perform its required functions, while sharing

the same hardware or software environment. This characteristic is composed of the following

sub characteristics:

© 101036563 COMPAIR Project Partners 37

- Co-existence - Degree to which a product can perform its required functions efficiently

while sharing a common environment and resources with other products, without

detrimental impact on any other product.

- Interoperability - Degree to which two or more systems, products or components can

exchange information and use the information that has been exchanged.

6.2.5 Usability

This characteristic represents the degree to which a product or system can be used by

specified users to achieve specific goals with effectiveness, efficiency, and satisfaction in a

specified context of use. This characteristic is composed of the following sub characteristics:

- Appropriateness recognisability - Degree to which users can recognize whether a

product or system is appropriate for their needs.

- Learnability - Degree to which a product or system can be used by specified users to

achieve specific goals of learning to use the product or system with effectiveness,

efficiency, freedom from risk and satisfaction in a specified context of use.

- Operability - Degree to which a product or system has attributes that make it easy to

operate and control.

- User error protection - Degree to which a system protects users against making errors.

- User interface aesthetics - Degree to which a user interface enables pleasing and

satisfying interaction for the user.

- Accessibility - Degree to which a product or system can be used by people with the

widest range of characteristics and capabilities to achieve a specified goal in a

specified context of use.

6.2.6 Security

This is the degree to which a product or system protects information and data so that persons

or other products or systems have the degree of data access appropriate to their types and

levels of authorization. This characteristic is composed of the following sub characteristics:

- Confidentiality - Degree to which a product or system ensures that data are accessible

only to those authorized to have access.

- Integrity - Degree to which a system, product or component prevents unauthorized

access to, or modification of, computer programs or data.

- Non-repudiation - Degree to which actions or events can be proven to have taken

place, so that the events or actions cannot be repudiated later.

- Accountability - Degree to which the actions of an entity can be traced uniquely to the

entity.

- Authenticity - Degree to which the identity of a subject or resource can be proved to be

the one claimed.

© 101036563 COMPAIR Project Partners 38

6.2.7 Maintainability

This characteristic represents the degree of effectiveness and efficiency with which a product

or system can be modified to improve it, correct it or adapt it to changes in environment, and

in requirements. This characteristic is composed of the following sub characteristics:

- Modularity -. Degree to which a system or computer program is composed of discrete

components such that a change to one component has minimal impact on other

components.

- Reusability - Degree to which an asset can be used in more than one system, or in

building other assets.

- Analysability - Degree of effectiveness and efficiency with which it is possible to assess

the impact on a product or system of an intended change to one or more of its parts,

or to diagnose a product for deficiencies or causes of failures, or to identify parts to be

modified.

- Modifiability - Degree to which a product or system can be effectively and efficiently

modified without introducing defects or degrading existing product quality.

- Testability - Degree of effectiveness and efficiency with which test criteria can be

established for a system, product or component and tests can be performed to

determine whether those criteria have been met.

6.2.8 Reliability

This is the degree to which a system, product or component performs specific functions under

specified conditions for a certain period. This characteristic is composed of the following sub

characteristics:

- Maturity - Degree to which a system, product or component meets needs for reliability

under normal operation.

- Availability - Degree to which a system, product or component is operational and

accessible when required for use.

- Fault tolerance - Degree to which a system, product or component operates as

intended despite the presence of hardware or software faults.

- Recoverability - Degree to which, in the event of an interruption or a failure, a product

or system can recover the data directly affected and re-establish the desired state of

the system.

6.2.9 Portability

Portability is the degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other operational or usage

environment to another. This characteristic is composed of the following sub characteristics:

- Adaptability - Degree to which a product or system can effectively and efficiently be

adapted for different or evolving hardware, software or other operational or usage

environments.

© 101036563 COMPAIR Project Partners 39

- Installability - Degree of effectiveness and efficiency with which a product or system

can be successfully installed and/or uninstalled in a specified environment.

- Replaceability - Degree to which a product can replace another specified software

product for the same purpose in the same environment.

© 101036563 COMPAIR Project Partners 40

7. Implementation Plan
Following the general plan for the execution of the COMPAIR project, that has been listed on

the Description of Action of the COMPAIR Grant Agreement, in this section we present the

plan for the delivery of the COMPAIR system environment.

More specifically, the integration of the COMPAIR system lasts until M30 of the project. Apart

from the final release for the integrated platform, we consider at least two intermediate major

releases by M12 and M20.

Thus, the COMPAIR implementation plan distinguishes between the following major

milestones for the go-live scenarios:

● Milestone 1: Closed User Group (Alpha) version of the COMPAIR platform

available for internal testing (M12)

Scope: To provide an early version of the COMPAIR platform that contains the features as

detailed in the first selection of epics. It works as a proof of concept of what we want to

implement within COMPAIR.

Outcome: In this milestone, we emphasise on a set of COMPAIR capabilities that enable the

end users to see a 2D map of the area of interest with information related to the sensors in

the area (Policy Monitoring Dashboard) as well as to calculate their CO2 footprint (CO2

Dashboard). It also allows them to use the first version of the mobile application (DEVA). The

main functionalities that are addressed in this milestone are those included in Section 2.1.

● Milestone 2: Open User Group (Beta) version available for user testing (M20)

Scope: To provide a working prototype of the COMPAIR capabilities that will be used in the

piloting phase of the project. To fine tune the COMPAIR platform, following the user validation

in the pilot cases. This version will be tested by a small number of external users.

Outcome: In this milestone, we emphasise on a set of the COMPAIR capabilities that enable

the end users to use the available functionalities in the COMPAIR dashboards and DEVA.

● Milestone 3: Public Round version available for user testing (M30)

Scope: CS data integrated in digital twins and all components in mature state ready to be

tested by external users.

Outcome: In this milestone, we emphasise on the refinements of the COMPAIR functions

according to the feedback resulting from the evaluation that will be made by the

representatives of the pilot cities. This version will be tested by a larger number of external

users.

The final version of the COMPAIR integrated prototype will be ready by Μ36 of the project.

Technical partners will make sure that all components are functional and resolve any bugs

identified during the pilots.

© 101036563 COMPAIR Project Partners 41

8. Conclusion
The current document includes the initial architecture specifications and design of the

COMPAIR platform and serves as the basis for the development tasks of the project.

Information about the functionalities from the system point of view, the characteristics of the

components of the system and the interaction between them, as well as the integration

activities and tools, were presented in detail.

This is the first version of the system’s reference architecture as this will continue to evolve

throughout the project and it is important to make sure that it is consistent and in line with the

design and implementation work being described in all technical work packages, assisting the

early pilot activities of the project.

This deliverable acts as the reference point for the actual development of the platform and

offers a shared and common background for the Consortium participants on the envisaged

technologies that are necessary to build such a platform.

© 101036563 COMPAIR Project Partners 42

9. References
1. https://traefik.io/

2. https://www.keycloak.org/

3. https://docs.ogc.org/is/18-088/18-088.html

4. https://www.docker.com/

5. https://docs.docker.com/compose/

6. http://en.wikipedia.org/wiki/Software_development_methodology  

7. http://agilemanifesto.org/

8. https://www.atlassian.com/software/jira

9. https://restfulapi.net/http-status-codes/

10. https://restfulapi.net/http-methods

11. https://junit.org/junit5/

12. https://site.mockito.org/

13. https://karma-runner.github.io/latest/index.html

14. https://mochajs.org/

15. https://www.chaijs.com/

16. https://docs.python.org/3/library/unittest.html

17. https://pypi.org/project/nose/ 

18. https://jestjs.io/

19. https://jmeter.apache.org/

20. https://www.sonarqube.org/

21. https://prometheus.io/

22. https://grafana.com/

23. https://www.iso.org/standard/35733.html

https://traefik.io/
https://www.keycloak.org/
https://docs.ogc.org/is/18-088/18-088.html
https://www.docker.com/
https://docs.docker.com/compose/
http://en.wikipedia.org/wiki/Software_development_methodology
http://agilemanifesto.org/
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-methods
https://junit.org/junit5/
https://site.mockito.org/
https://karma-runner.github.io/latest/index.html
https://mochajs.org/
https://www.chaijs.com/
https://docs.python.org/3/library/unittest.html
https://pypi.org/project/nose/
https://jestjs.io/
https://jmeter.apache.org/
https://www.sonarqube.org/
https://prometheus.io/
https://grafana.com/
https://www.iso.org/standard/35733.html

